renyuxi's picture
Update app.py (#6)
76710eb verified
raw
history blame
4.41 kB
import spaces
import argparse
import os
import time
from os import path
from PIL import ImageOps
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from scheduling_tcd import TCDScheduler
torch.backends.cuda.matmul.allow_tf32 = True
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained("ckpt/sd15", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16")
pipe.load_lora_weights("ByteDance/Hyper-SD", weight_name="Hyper-SD15-1step-lora.safetensors", adapter_name="default")
pipe.to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing")
with gr.Blocks(js=js_func) as demo:
with gr.Column():
with gr.Row():
with gr.Column():
# scribble = gr.Image(source="canvas", tool="color-sketch", shape=(512, 512), height=768, width=768, type="pil")
scribble = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512), sources=(), brush=gr.Brush(color_mode="fixed", colors=["#FFFFFF"]), canvas_size=(1024, 1024))
# scribble_out = gr.Image(height=384, width=384)
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
controlnet_scale = gr.Number(label="ControlNet Conditioning Scale", value=1.0, interactive=True)
seed = gr.Number(label="Seed", value=3413, interactive=True)
btn = gr.Button(value="run")
with gr.Column():
output = gr.Gallery(height=768, format="png")
# output = gr.Image()
@spaces.GPU
def process_image(steps, prompt, controlnet_scale, eta, seed, scribble, num_images):
global pipe
if scribble:
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16), timer("inference"):
result = pipe(
prompt=[prompt]*num_images,
image=[ImageOps.invert(scribble['composite'])]*num_images,
# image=[scribble['composite']]*num_images,
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=steps,
guidance_scale=0.,
eta=eta,
controlnet_conditioning_scale=float(controlnet_scale),
).images
# result[0].save("test.jpg")
# print(result[0])
return result
else:
return None
reactive_controls = [steps, prompt, controlnet_scale, eta, seed, scribble, num_images]
for control in reactive_controls:
if reactive_controls[-2] is not None:
control.change(fn=process_image, inputs=reactive_controls, outputs=[output, ])
btn.click(process_image, inputs=reactive_controls, outputs=[output, ])
if __name__ == "__main__":
demo.launch()