Commit
·
a392379
1
Parent(s):
2b8e93d
Hotfix
Browse files- src/display/utils.py +1 -1
- src/populate.py +1 -1
src/display/utils.py
CHANGED
@@ -50,7 +50,7 @@ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_
|
|
50 |
|
51 |
auto_eval_column_dict.append(["eval_name", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
52 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
|
53 |
-
auto_eval_column_dict.append(["hf_model_id", ColumnContent, ColumnContent("Model link (temporary)", "str",
|
54 |
auto_eval_column_dict.append(["agree_cs", ColumnContent, ColumnContent("AGREE", "number", True)])
|
55 |
auto_eval_column_dict.append(["anli_cs", ColumnContent, ColumnContent("ANLI", "number", True)])
|
56 |
auto_eval_column_dict.append(["arc_challenge_cs", ColumnContent, ColumnContent("ARC-Challenge", "number", True)])
|
|
|
50 |
|
51 |
auto_eval_column_dict.append(["eval_name", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
52 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
|
53 |
+
auto_eval_column_dict.append(["hf_model_id", ColumnContent, ColumnContent("Model link (temporary)", "str", False)])
|
54 |
auto_eval_column_dict.append(["agree_cs", ColumnContent, ColumnContent("AGREE", "number", True)])
|
55 |
auto_eval_column_dict.append(["anli_cs", ColumnContent, ColumnContent("ANLI", "number", True)])
|
56 |
auto_eval_column_dict.append(["arc_challenge_cs", ColumnContent, ColumnContent("ARC-Challenge", "number", True)])
|
src/populate.py
CHANGED
@@ -19,7 +19,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
19 |
df.replace(r'\s+', np.nan, regex=True)
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
-
df['Model'] = df.apply(lambda row: model_hyperlink(row['
|
23 |
|
24 |
return raw_data, df
|
25 |
|
|
|
19 |
df.replace(r'\s+', np.nan, regex=True)
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
+
df['Model'] = df.apply(lambda row: model_hyperlink(row['Model link (temporary)'], row['Model']), axis=1)
|
23 |
|
24 |
return raw_data, df
|
25 |
|