davidadamczyk commited on
Commit
a392379
·
1 Parent(s): 2b8e93d
Files changed (2) hide show
  1. src/display/utils.py +1 -1
  2. src/populate.py +1 -1
src/display/utils.py CHANGED
@@ -50,7 +50,7 @@ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_
50
 
51
  auto_eval_column_dict.append(["eval_name", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
52
  auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
53
- auto_eval_column_dict.append(["hf_model_id", ColumnContent, ColumnContent("Model link (temporary)", "str", True)])
54
  auto_eval_column_dict.append(["agree_cs", ColumnContent, ColumnContent("AGREE", "number", True)])
55
  auto_eval_column_dict.append(["anli_cs", ColumnContent, ColumnContent("ANLI", "number", True)])
56
  auto_eval_column_dict.append(["arc_challenge_cs", ColumnContent, ColumnContent("ARC-Challenge", "number", True)])
 
50
 
51
  auto_eval_column_dict.append(["eval_name", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
52
  auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
53
+ auto_eval_column_dict.append(["hf_model_id", ColumnContent, ColumnContent("Model link (temporary)", "str", False)])
54
  auto_eval_column_dict.append(["agree_cs", ColumnContent, ColumnContent("AGREE", "number", True)])
55
  auto_eval_column_dict.append(["anli_cs", ColumnContent, ColumnContent("ANLI", "number", True)])
56
  auto_eval_column_dict.append(["arc_challenge_cs", ColumnContent, ColumnContent("ARC-Challenge", "number", True)])
src/populate.py CHANGED
@@ -19,7 +19,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
19
  df.replace(r'\s+', np.nan, regex=True)
20
  # filter out if any of the benchmarks have not been produced
21
  df = df[has_no_nan_values(df, benchmark_cols)]
22
- df['Model'] = df.apply(lambda row: model_hyperlink(row['hf_model_id'], row['Model']), axis=1)
23
 
24
  return raw_data, df
25
 
 
19
  df.replace(r'\s+', np.nan, regex=True)
20
  # filter out if any of the benchmarks have not been produced
21
  df = df[has_no_nan_values(df, benchmark_cols)]
22
+ df['Model'] = df.apply(lambda row: model_hyperlink(row['Model link (temporary)'], row['Model']), axis=1)
23
 
24
  return raw_data, df
25