Spaces:
Running
Running
File size: 17,057 Bytes
af7ac2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np
torch.manual_seed(1234)
class GST(nn.Module):
def __init__(self, hyper_parameters):
super().__init__()
self.prosody_extractor = LogMelSpecReferenceEncoder()
self.stl = MultiSTL(hyper_parameters=hyper_parameters)
def forward(self, logmel_spec, logmel_lengths):
prosody_features_embedded = self.prosody_extractor(logmel_spec, logmel_lengths) # [N, 512]
style_embed, gst_scores = self.stl(prosody_features_embedded)
return style_embed, gst_scores
def inference(self, scores): # NEED TO DEFINE SCORES TENSOR DIMENSION!!
style_embed_inference = self.stl.inference(scores=scores)
return style_embed_inference
class PitchContourEncoder(nn.Module):
"""
"""
def __init__(self, hyper_parameters):
super().__init__()
K = len(hyper_parameters['ref_enc_out_channels'])
filters = [1] + hyper_parameters['ref_enc_out_channels']
kernel_sizes = hyper_parameters['seq_ref_enc_filter_size']
convs_2d = []
for i in range(K):
conv2d_init = nn.Conv2d(in_channels=filters[i], out_channels=filters[i + 1],
kernel_size=(kernel_sizes[i], 3), stride=(1, 1),
padding=(int((kernel_sizes[i] - 1) / 2), int((3 - 1) / 2)), bias=True)
nn.init.xavier_uniform_(conv2d_init.weight, gain=torch.nn.init.calculate_gain('linear'))
convs_2d.append(conv2d_init)
self.convs2D = nn.ModuleList(convs_2d)
self.bns2D = nn.ModuleList([nn.BatchNorm2d(num_features=hyper_parameters['ref_enc_out_channels'][i])
for i in range(K)])
# WEIGHT INITIALIZATION DEFAULT:
self.prosody_bi_lstm = nn.LSTM(input_size=int(176), hidden_size=int(512/2), num_layers=1, batch_first=True,
bidirectional=True)
def forward(self, bin_locations): # [N, BIN_SUBAND, LEN_MELSPEC] (BIN_SUBAND = 13)
N = bin_locations.size(0) # Number of samples
# Changing tensor dimensions to have 1 input channel for the first conv2D layer:
bin_locations = bin_locations.unsqueeze(1)
bin_locations = bin_locations.transpose(2, 3) # [N, 1, LEN_MELSPEC, BIN_SUBAND]
"""We implement ReLU gates at the output of Conv. layers. We could check it without"""
# For pitch tracking:
for conv2, bn2 in zip(self.convs2D, self.bns2D):
bin_locations = conv2(bin_locations)
bin_locations = bn2(bin_locations)
bin_locations = F.dropout(F.relu(bin_locations), 0.5, self.training) # [N, Cout, LEN_MELSPEC, BIN_SUBAND]
# Resize:
bin_locations = bin_locations.transpose(1, 2) # [N, LEN_MELSPEC, Cout, BIN_SUBAND]
T = bin_locations.size(1)
bin_locations = bin_locations.contiguous().view(N, T, -1) # [N, LEN_MELSPEC, Cout*BIN_SUBAND]
# Encode sequences into a bidirectional LSTM layer:
"""In our case, we do not care about the specific length of each sequence, as with the zero padding the encoder
should be able to also encode the different lengths and see zero when its over. That is why we do not apply
a packing padded sequence before LSTM layer."""
_, (encoded_prosody, cell_state) = self.prosody_bi_lstm(bin_locations)
encoded_prosody = encoded_prosody.transpose(0, 1)
encoded_prosody = encoded_prosody.contiguous().view(N, -1)
return encoded_prosody # should be [N, 512]
# DENSE GST Reference Encoder:
class ProsodyEncoder(nn.Module):
"""
This convolution class nn.Module performs two parallel convolution stacks, 1-D conv. and another 2-D conv.
Afterwards, the output of both will be concatenated to be passed, later, through a bidirectional LSTM layer.
"""
def __init__(self, hyper_parameters):
super().__init__()
K = len(hyper_parameters['ref_enc_out_channels'])
filters = [1] + hyper_parameters['ref_enc_out_channels']
kernel_sizes = hyper_parameters['seq_ref_enc_filter_size']
# I NEED TO ADJUST PADDING TO NOT LOSE THE TOTAL LENGTH OF SEQUENCE!!
convs_1d = []
convs_2d = []
for i in range(K):
conv1d_init = nn.Conv1d(in_channels=filters[i], out_channels=filters[i + 1],
kernel_size=kernel_sizes[i], stride=1,
padding=int((kernel_sizes[i] - 1) / 2), bias=True)
nn.init.xavier_uniform_(conv1d_init.weight, gain=torch.nn.init.calculate_gain('linear'))
convs_1d.append(conv1d_init)
conv2d_init = nn.Conv2d(in_channels=filters[i], out_channels=filters[i + 1],
kernel_size=(kernel_sizes[i], 3), stride=(1, 1),
padding=(int((kernel_sizes[i] - 1) / 2), int((3 - 1) / 2)), bias=True)
nn.init.xavier_uniform_(conv2d_init.weight, gain=torch.nn.init.calculate_gain('linear'))
convs_2d.append(conv2d_init)
self.convs1D = nn.ModuleList(convs_1d)
self.convs2D = nn.ModuleList(convs_2d)
self.bns1D = nn.ModuleList([nn.BatchNorm1d(num_features=hyper_parameters['ref_enc_out_channels'][i])
for i in range(K)])
self.bns2D = nn.ModuleList([nn.BatchNorm2d(num_features=hyper_parameters['ref_enc_out_channels'][i])
for i in range(K)])
self.prosody_linear = nn.Linear(512, 256, bias=True)
torch.nn.init.xavier_uniform_(self.prosody_linear.weight, gain=torch.nn.init.calculate_gain('linear'))
# WEIGHT INITIALIZATION DEFAULT:
self.prosody_bi_lstm = nn.LSTM(input_size=int(256), hidden_size=int(512/2), num_layers=1, batch_first=True,
bidirectional=True)
def forward(self, bin_locations, pitch_intensities): # [N, LEN_MELSPEC, 1], [N, LEN_MELSPEC, 3]
N = bin_locations.size(0) # Number of samples
num_intensities = pitch_intensities.size(2)
# Changing tensor dimensions to have 1 input channel for the first conv2D layer:
pitch_intensities = pitch_intensities.view(N, 1, -1, num_intensities) # [N, 1, LEN_MELSPEC, num_intensities]
bin_locations = bin_locations.transpose(1, 2) # [N, 1, LEN_MELSPEC]
"""We implement ReLU gates at the output of Conv. layers. We could check it without"""
# For pitch tracking:
for conv, bn in zip(self.convs1D, self.bns1D):
bin_locations = conv(bin_locations)
bin_locations = bn(bin_locations)
bin_locations = F.dropout(F.relu(bin_locations), 0.5, self.training) # [N, Cout, T]
# For pitch intensities:
for conv2, bn2 in zip(self.convs2D, self.bns2D):
pitch_intensities = conv2(pitch_intensities)
pitch_intensities = bn2(pitch_intensities)
pitch_intensities = F.dropout(F.relu(pitch_intensities), 0.5, self.training) # [N, Cout, T, bins]
# Resize pitch intensities
bin_locations = bin_locations.transpose(1, 2) # [N, T, Cout]
pitch_intensities = pitch_intensities.transpose(1, 2) # [N, T, Cout, bins]
T = pitch_intensities.size(1)
pitch_intensities = pitch_intensities.contiguous().view(N, T, -1) # [N, T, Cout*bins]
# Concatenate features
pitch_convolved = torch.cat((bin_locations, pitch_intensities), 2)
# Linear projection (IS IT NECESSARY? DOES ACTIVATION FUNCTION IMPROVE THE RESULT?)
projection_pitch_convolved = F.dropout(F.tanh(self.prosody_linear(pitch_convolved)), 0.5, self.training)
# Encode sequences into a bidirectional LSTM layer:
"""In our case, we do not care about the specific length of each sequence, as with the zero padding the encoder
should be able to also encode the different lengths and see zero when its over. That is why we do not apply
a packing padded sequence before LSTM layer."""
_, (encoded_prosody, cell_state) = self.prosody_bi_lstm(projection_pitch_convolved)
encoded_prosody = encoded_prosody.transpose(0, 1)
encoded_prosody = encoded_prosody.contiguous().view(N, -1)
return encoded_prosody # should be [N, 512]
class LogMelSpecReferenceEncoder(nn.Module):
"""
"""
def __init__(self):
super().__init__()
reference_encoder_out_channels = [32, 32, 64, 64, 128, 128]
K = len(reference_encoder_out_channels)
filters = [1] + reference_encoder_out_channels
kernel_size = (3, 3)
stride = (2, 2)
padding = (1, 1)
convs_2d = []
for i in range(K):
conv2d_init = nn.Conv2d(in_channels=filters[i], out_channels=filters[i + 1],
kernel_size=kernel_size, stride=stride,
padding=padding, bias=True)
nn.init.xavier_uniform_(conv2d_init.weight, gain=torch.nn.init.calculate_gain('linear'))
convs_2d.append(conv2d_init)
self.convs2D = nn.ModuleList(convs_2d)
self.bns2D = nn.ModuleList([nn.BatchNorm2d(num_features=reference_encoder_out_channels[i])
for i in range(K)])
out_channels = self.calculate_channels(80, 3, 2, 1, K)
# self.gru = nn.GRU(input_size=reference_encoder_out_channels[-1] * out_channels, hidden_size=512,
# batch_first=True, bidirectional=False)
# WEIGHT INITIALIZATION DEFAULT:
self.bi_lstm = nn.LSTM(input_size=reference_encoder_out_channels[-1] * out_channels,
hidden_size=int(512/2), num_layers=1, batch_first=True, bidirectional=True)
def forward(self, logmel_spec, logmel_lengths): # [N, MEL_CHANNELS, LEN_MELSPEC]
N = logmel_spec.size(0) # Number of samples
# Changing tensor dimensions to have 1 input channel for the first conv2D layer:
logmel_spec = logmel_spec.unsqueeze(1)
logmel_spec = logmel_spec.transpose(2, 3) # [N, 1, LEN_MELSPEC, MEL_CHANNELS]
"""We implement ReLU gates at the output of Conv. layers. We could check it without"""
for conv2, bn2 in zip(self.convs2D, self.bns2D):
logmel_spec = conv2(logmel_spec)
logmel_spec = bn2(logmel_spec)
logmel_spec = F.dropout(F.relu(logmel_spec), 0.5, self.training) # [N, Cout, LEN_MELSPEC, BIN_SUBAND]
# Resize:
logmel_spec = logmel_spec.transpose(1, 2) # [N, LEN_MELSPEC, Cout, MEL_CHANNELS]
T = logmel_spec.size(1)
logmel_spec = logmel_spec.contiguous().view(N, T, -1) # [N, LEN_MELSPEC, Cout*BIN_SUBAND]
logmel_lengths = logmel_lengths.cpu().numpy()
last_hidden_states = torch.zeros(N, 512)
logmel_after_lengths = np.trunc(logmel_lengths / 2**6)
logmel_after_lengths = logmel_after_lengths + 1
logmel_after_lengths = logmel_after_lengths.astype(int)
logmel_after_lengths = torch.tensor(logmel_after_lengths)
# logmel_spec = nn.utils.rnn.pack_padded_sequence(logmel_spec, logmel_after_lengths, batch_first=True)
self.bi_lstm.flatten_parameters()
# memory, out = self.gru(logmel_spec)
outputs, (hidden_states, cell_state) = self.bi_lstm(logmel_spec)
hidden_states = hidden_states.transpose(0, 1)
hidden_states = hidden_states.contiguous().view(N, -1)
# outputs, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# for j in range(N):
# last_hidden_states[j, :] = outputs[j, logmel_after_lengths[j] - 1, :]
# return last_hidden_states.cuda(non_blocking=True)
return hidden_states
def calculate_channels(self, L, kernel_size, stride, padding, n_convs):
for i in range(n_convs):
L = (L - kernel_size + 2 * padding) // stride + 1
return L
# BASIC FORM FOR NOW. NEEDS TO BE EXPANDED TO OUR NEW PROPOSAL
class MultiSTL(nn.Module):
"""
inputs --- [N, E]
"""
def __init__(self, hyper_parameters):
super().__init__()
# E = 256 / num_heads = 8 / token_num = 10!!
self.embed = nn.Parameter(torch.FloatTensor(hyper_parameters['token_num'],
hyper_parameters['E'] // hyper_parameters['num_heads']))
# d_q = hyper_parameters['E'] // 2
d_q = hyper_parameters['E']
d_k = hyper_parameters['E'] // hyper_parameters['num_heads']
self.attention = MultiHeadAttention(query_dim=d_q, key_dim=d_k,
num_units=hyper_parameters['E'], num_heads=hyper_parameters['num_heads'])
init.xavier_uniform_(self.embed, gain=init.calculate_gain('linear'))
def forward(self, inputs):
N = inputs.size(0) # Number of samples in the batch
query = inputs.unsqueeze(1) # [N, 1, E]
keys = F.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) # [N, token_num, E // num_heads]
style_embed, gst_scores = self.attention(query, keys)
return style_embed, gst_scores
def inference(self, scores):
keys = F.tanh(self.embed).unsqueeze(0)
style_embed_inference = self.attention.inference(keys, scores=scores)
return style_embed_inference
class MultiHeadAttention(nn.Module):
"""
input:
query --- [N, T_q, query_dim] T_q = 1
key --- [N, T_k, key_dim] T_k = 5 (num of tokens)
output:
out --- [N, T_q, num_units]
"""
def __init__(self, query_dim, key_dim, num_units, num_heads):
super().__init__()
self.num_units = num_units
self.num_heads = num_heads
self.key_dim = key_dim
#self.sparse_max = Sparsemax(dim=3)
# Linear projection of data (encoder and decoder states) into a fixed number of hidden units
self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
def forward(self, query, key):
querys = self.W_query(query) # [N, T_q, num_units] the last dimension changes according to the output dim
keys = self.W_key(key) # [N, T_k, num_units]
values = self.W_value(key)
# the number of units set at the initialization is the total of hidden feature units we want. Then, we will
# assign a specific number of num_units according to the number of heads of the multi head Attention.
# Basically, style tokens are the number of heads we configure to learn different types of attention
#
split_size = self.num_units // self.num_heads # integer division, without remainder
querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h]
keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
# score = softmax(QK^T / (d_k ** 0.5))
scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k]
scores = scores / (self.key_dim ** 0.33) # cube root instead of square to prevent very small values
scores = F.softmax(scores, dim=3) # From dimension 3, length of Key sequences.
# scores = self.sparse_max(scores)
out = torch.matmul(scores, values) # [h, N, T_q, num_units/h]
out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
scores = scores.squeeze()
return out, scores
def inference(self, key, scores): # key [1, 5, 512/8] # [1, num_tokens]
"""Only need the keys that are already trained, and the scores that I impose"""
scores = scores.unsqueeze(0).unsqueeze(0).unsqueeze(0).expand(self.num_heads, -1, -1, -1)
# print(scores.shape)
values = self.W_value(key)
# the number of units set at the initialization is the total of hidden feature units we want. Then, we will
# assign a specific number of num_units according to the number of heads of the multi head Attention.
# Basically, style tokens are the number of heads we configure to learn different types of attention
#
split_size = self.num_units // self.num_heads # integer division, without remainder
values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
# score = softmax(QK^T / (d_k ** 0.5))
# out = score * V
out = torch.matmul(scores, values) # [h, 1, T_q = 1, num_units/h]
out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
return out
|