Spaces:
Running
Running
from __future__ import absolute_import, division, print_function, unicode_literals | |
import glob | |
import os | |
import argparse | |
import json | |
import torch | |
from scipy.io.wavfile import write | |
from env import AttrDict | |
from meldataset import mel_spectrogram, MAX_WAV_VALUE, load_wav | |
from models import Generator | |
h = None | |
device = None | |
def load_checkpoint(filepath, device): | |
assert os.path.isfile(filepath) | |
print("Loading '{}'".format(filepath)) | |
checkpoint_dict = torch.load(filepath, map_location=device) | |
print("Complete.") | |
return checkpoint_dict | |
def get_mel(x): | |
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax) | |
def scan_checkpoint(cp_dir, prefix): | |
pattern = os.path.join(cp_dir, prefix + '*') | |
cp_list = glob.glob(pattern) | |
if len(cp_list) == 0: | |
return '' | |
return sorted(cp_list)[-1] | |
def inference(a): | |
generator = Generator(h).to(device) | |
state_dict_g = load_checkpoint(a.checkpoint_file, device) | |
generator.load_state_dict(state_dict_g['generator']) | |
filelist = os.listdir(a.input_wavs_dir) | |
os.makedirs(a.output_dir, exist_ok=True) | |
generator.eval() | |
generator.remove_weight_norm() | |
with torch.no_grad(): | |
for i, filname in enumerate(filelist): | |
wav, sr = load_wav(os.path.join(a.input_wavs_dir, filname)) | |
wav = wav / MAX_WAV_VALUE | |
wav = torch.FloatTensor(wav).to(device) | |
x = get_mel(wav.unsqueeze(0)) | |
y_g_hat = generator(x) | |
audio = y_g_hat.squeeze() | |
audio = audio * MAX_WAV_VALUE | |
audio = audio.cpu().numpy().astype('int16') | |
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + '_generated.wav') | |
write(output_file, h.sampling_rate, audio) | |
print(output_file) | |
def main(): | |
print('Initializing Inference Process..') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--input_wavs_dir', default='test_files') | |
parser.add_argument('--output_dir', default='generated_files') | |
parser.add_argument('--checkpoint_file', required=True) | |
a = parser.parse_args() | |
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json') | |
with open(config_file) as f: | |
data = f.read() | |
global h | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
torch.manual_seed(h.seed) | |
global device | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(h.seed) | |
device = torch.device('cuda') | |
else: | |
device = torch.device('cpu') | |
inference(a) | |
if __name__ == '__main__': | |
main() | |