tacotron2-gst-en / utils.py
mireiafarrus's picture
tacotron2 and hifigan upload
af7ac2b
import numpy as np
from scipy.io.wavfile import read
import torch
def get_mask_from_lengths(lengths):
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len))
mask = (ids < lengths.unsqueeze(1)).byte()
# mask = (ids < lengths.unsqueeze(1).cuda()).cpu()
# mask = mask.byte()
return mask
# probably I won't use it from here
def load_wav_to_torch(full_path, sr):
sampling_rate, data = read(full_path)
assert sr == sampling_rate, "{} SR doesn't match {} on path {}".format(
sr, sampling_rate, full_path)
return torch.FloatTensor(data.astype(np.float32))
# probably I won't use it from here
def load_filepaths_and_text(filename, sort_by_length, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
if sort_by_length:
filepaths_and_text.sort(key=lambda x: len(x[1]))
return filepaths_and_text
def to_gpu(x):
x = x.contiguous()
if torch.cuda.is_available():
x = x.cuda(non_blocking=True) # I understand this lets asynchronous processing
return torch.autograd.Variable(x)