import random import torch.nn.functional as F from tensorboardX import SummaryWriter from plotting_utils import plot_alignment_to_numpy, plot_gst_scores_to_numpy, plot_spectrogram_to_numpy from plotting_utils import plot_gate_outputs_to_numpy class Tacotron2Logger(SummaryWriter): def __init__(self, logdir): super(Tacotron2Logger, self).__init__(logdir) def log_training(self, reduced_loss, grad_norm, learning_rate, duration, iteration): self.add_scalar("training.loss", reduced_loss, iteration) self.add_scalar("grad.norm", grad_norm, iteration) self.add_scalar("learning.rate", learning_rate, iteration) self.add_scalar("duration", duration, iteration) def log_validation(self, reduced_loss, model, y, y_pred, gst_scores, iteration): self.add_scalar("validation.loss", reduced_loss, iteration) _, mel_outputs, gate_outputs, alignments, _ = y_pred mel_targets, gate_targets = y # plot distribution of parameters for tag, value in model.named_parameters(): tag = tag.replace('.', '/') self.add_histogram(tag, value.data.cpu().numpy(), iteration) # plot alignment, mel target and predicted, gate target and predicted idx = random.randint(0, alignments.size(0) - 1) align_idx = alignments[idx].data.cpu().numpy().T gst_scores = gst_scores.data.cpu().numpy().T # print("Validation GST scores before plotting to tensorboard: {}".format(gst_scores.shape)) meltarg_idx = mel_targets[idx].data.cpu().numpy() melout_idx = mel_outputs[idx].data.cpu().numpy() self.add_image("alignment", plot_alignment_to_numpy(align_idx), iteration) self.add_image("gst_scores", plot_gst_scores_to_numpy(gst_scores), iteration) self.add_image("mel_target", plot_spectrogram_to_numpy(meltarg_idx), iteration) self.add_image("mel_predicted", plot_spectrogram_to_numpy(melout_idx), iteration) self.add_image( "gate", plot_gate_outputs_to_numpy( gate_targets[idx].data.cpu().numpy(), F.sigmoid(gate_outputs[idx]).data.cpu().numpy()), iteration)