AmeyaPrabhu commited on
Commit
cbab33e
·
verified ·
1 Parent(s): 9852685

Update contamination_report.csv

Browse files

**What are you reporting:**

- [x] Evaluation dataset(s) found in a pre-training corpus. (e.g. COPA found in ThePile)
- [ ] Evaluation dataset(s) found in a pre-trained model. (e.g. FLAN T5 has been trained on ANLI)

**Contaminated Evaluation Dataset(s):**
- openai_humaneval
- mbpp

**Contaminated Corpora:**

- EleutherAI/pile
- bigcode/the-stack

**Approach:**

- [x] Data-based approach
- [ ] Model-based approach

**Description of your method, 3-4 sentences. Evidence of data contamination:**

An example in the test data (i.e., those of MBPP or HumanEval), is noted as contaminated if the aggregated similarity score is 100, i.e., a perfect match exists on the surface- or semantic-level. Levenshtein similarity score is used to measure surface-level similarity between programs and Dolos toolkit), which is a source code plagiarism detection tool for education purposes, measure semantic similarity between programs.

**Citation**

Is there a paper that reports the data contamination or describes the method used to detect data contamination? Yes

**url**: [https://arxiv.org/abs/2403.04811](https://arxiv.org/abs/2403.04811)

```@article{riddell2024quantifying,
title={Quantifying contamination in evaluating code generation capabilities of language models},
author={Riddell, Martin and Ni, Ansong and Cohan, Arman},
journal={arXiv preprint arXiv:2403.04811},
year={2024}
}
```

Important! If you wish to be listed as an author in the final report, please complete this information for all the authors of this Pull Request.

Full name: Ameya Prabhu
Institution: Tübingen AI Center, University of Tübingen
Email: [email protected]

Files changed (1) hide show
  1. contamination_report.csv +6 -1
contamination_report.csv CHANGED
@@ -462,4 +462,9 @@ bigbio/mednli;;GPT-3.5;model;0.0;0.0;0.0;model-based;https://arxiv.org/pdf/2308.
462
 
463
  RadNLI;;GPT-4;model;0.0;0.0;0.0;model-based;https://arxiv.org/pdf/2308.08493;8
464
  RadNLI;;GPT-3.5;model;0.0;0.0;0.0;model-based;https://arxiv.org/pdf/2308.08493;8
465
-
 
 
 
 
 
 
462
 
463
  RadNLI;;GPT-4;model;0.0;0.0;0.0;model-based;https://arxiv.org/pdf/2308.08493;8
464
  RadNLI;;GPT-3.5;model;0.0;0.0;0.0;model-based;https://arxiv.org/pdf/2308.08493;8
465
+
466
+
467
+ openai_humaneval;;EleutherAI/pile;corpus;;;12.2;data-based;https://arxiv.org/abs/2403.04811;
468
+ mbpp;;EleutherAI/pile;corpus;;;3.6;data-based;https://arxiv.org/abs/2403.04811;
469
+ openai_humaneval;;bigcode/the-stack;corpus;;;18.9;data-based;https://arxiv.org/abs/2403.04811;
470
+ mbpp;;bigcode/the-stack;corpus;;;20.8;data-based;https://arxiv.org/abs/2403.04811;