Spaces:
Build error
Build error
File size: 7,244 Bytes
e6770c4 471a329 e6770c4 90b19f5 d2ae5cd 90b19f5 58a97e3 e6770c4 819d283 e6770c4 e69a8dd e6770c4 90b19f5 58a97e3 90b19f5 e69a8dd 90b19f5 e69a8dd 90b19f5 e69a8dd 90b19f5 58a97e3 e69a8dd 97c0880 158315c ed46de3 97c0880 90b19f5 e69a8dd 90b19f5 e69a8dd 90b19f5 2e7c2d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import math
import cv2
from sklearn import datasets
import numpy as np
from matplotlib import pyplot as plt
from scipy import ndimage
from skimage import measure, color, io
from tensorflow.keras.preprocessing import image
from scipy import ndimage
import skimage.io as io
import skimage.transform as trans
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub.keras_mixin import from_pretrained_keras
from itertools import cycle, islice
#Function that predicts on only 1 sample
def predict_sample(image):
prediction = model.predict(image[tf.newaxis, ...])
prediction[prediction > 0.5 ] = 1
prediction[prediction !=1] = 0
result = prediction[0]*255
return result
def create_input_image(data, visualize=False):
#Initialize input matrix
input = np.ones((256,256))
#Fill matrix with data point values
for i in range(0,len(data)):
if math.floor(data[i][0]) < 256 and math.floor(data[i][1]) < 256:
input[math.floor(data[i][0])][math.floor(data[i][1])] = 0
elif math.floor(data[i][0]) >= 256:
input[255][math.floor(data[i][1])] = 0
elif math.floor(data[i][1]) >= 256:
input[math.floor(data[i][0])][255] = 0
#Visualize
if visualize == True:
plt.imshow(input.T, cmap='gray')
plt.gca().invert_yaxis()
return input
model = from_pretrained_keras("tareknaous/unet-visual-clustering")
def get_instances(prediction, data, max_filter_size=1):
#Adjust format (clusters to be 255 and rest is 0)
prediction[prediction == 255] = 3
prediction[prediction == 0] = 4
prediction[prediction == 3] = 0
prediction[prediction == 4] = 255
#Convert to 8-bit image
prediction = image.img_to_array(prediction, dtype='uint8')
#Get 1 color channel
cells=prediction[:,:,0]
#Threshold
ret1, thresh = cv2.threshold(cells, 0, 255, cv2.THRESH_BINARY)
#Filter to remove noise
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
#Get the background
background = cv2.dilate(opening,kernel,iterations=5)
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret2, foreground = cv2.threshold(dist_transform,0.04*dist_transform.max(),255,0)
foreground = np.uint8(foreground)
unknown = cv2.subtract(background,foreground)
#Connected Component Analysis
ret3, markers = cv2.connectedComponents(foreground)
markers = markers+10
markers[unknown==255] = 0
#Watershed
img = cv2.merge((prediction,prediction,prediction))
markers = cv2.watershed(img,markers)
img[markers == -1] = [0,255,255]
#Maximum filtering
markers = ndimage.maximum_filter(markers, size=max_filter_size)
# plt.imshow(markers.T, cmap='gray')
# plt.gca().invert_yaxis()
#Get an RGB colored image
img2 = color.label2rgb(markers, bg_label=1)
# plt.imshow(img2)
# plt.gca().invert_yaxis()
#Get regions
regions = measure.regionprops(markers, intensity_image=cells)
#Get Cluster IDs
cluster_ids = np.zeros(len(data))
for i in range(0,len(cluster_ids)):
row = math.floor(data[i][0])
column = math.floor(data[i][1])
if row < 256 and column < 256:
cluster_ids[i] = markers[row][column] - 10
elif row >= 256:
# cluster_ids[i] = markers[255][column]
cluster_ids[i] = 0
elif column >= 256:
# cluster_ids[i] = markers[row][255]
cluster_ids[i] = 0
cluster_ids = cluster_ids.astype('int8')
cluster_ids[cluster_ids == -11] = 0
return cluster_ids
def visual_clustering(cluster_type, num_clusters, num_samples, noise, random_state, median_kernel_size, max_kernel_size):
NUM_CLUSTERS = num_clusters
CLUSTER_STD = 4 * np.ones(NUM_CLUSTERS)
if cluster_type == "blobs":
data = datasets.make_blobs(n_samples=num_samples, centers=NUM_CLUSTERS, random_state=random_state,center_box=(0, 256), cluster_std=CLUSTER_STD)
elif cluster_type == "varied blobs":
cluster_std = 1.5 * np.ones(NUM_CLUSTERS)
data = datasets.make_blobs(n_samples=num_samples, centers=NUM_CLUSTERS, cluster_std=cluster_std, random_state=random_state)
elif cluster_type == "aniso":
X, y = datasets.make_blobs(n_samples=num_samples, centers=NUM_CLUSTERS, random_state=random_state, center_box=(-30, 30))
transformation = [[0.8, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
data = (X_aniso, y)
elif cluster_type == "noisy moons":
data = datasets.make_moons(n_samples=num_samples, noise=noise)
elif cluster_type == "noisy circles":
data = datasets.make_circles(n_samples=num_samples, factor=.01, noise=noise)
max_x = max(data[0][:, 0])
min_x = min(data[0][:, 0])
new_max = 256
new_min = 0
data[0][:, 0] = (((data[0][:, 0] - min_x)*(new_max-new_min))/(max_x-min_x))+ new_min
max_y = max(data[0][:, 1])
min_y = min(data[0][:, 1])
new_max_y = 256
new_min_y = 0
data[0][:, 1] = (((data[0][:, 1] - min_y)*(new_max_y-new_min_y))/(max_y-min_y))+ new_min_y
fig1 = plt.figure()
plt.scatter(data[0][:, 0], data[0][:, 1], s=1, c='black')
plt.close()
input = create_input_image(data[0])
filtered = ndimage.median_filter(input, size=median_kernel_size)
result = predict_sample(filtered)
y_km = get_instances(result, data[0], max_filter_size=max_kernel_size)
colors = np.array(list(islice(cycle(["#000000", '#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3',
'#999999', '#e41a1c', '#dede00' ,'#491010']),
int(max(y_km) + 1))))
#add black color for outliers (if any)
colors = np.append(colors, ["#000000"])
fig2 = plt.figure()
plt.scatter(data[0][:, 0], data[0][:, 1], s=10, color=colors[y_km.astype('int8')])
plt.close()
return fig1, fig2
title = "Clustering Plotted Data by Image Segmentation"
description = '''
Gradio Demo for Visual Clustering on synthetic datasets.
* **Number of Clusters**: Set the number of clusters to generate in the dataset (Fixed to only 2 in noisy circles and moons)
* **Number of Samples**: Number of data points in the dataset
* **Noise**: Controls level of noise in noisy circles and moons
* **Random State**: Allows you to change the location of the generated clusters
* **Denoising Filter Kernel Size**: Size of the denoising filter
* **Max Filter Kernel Size**: Size of the max filter
'''
iface = gr.Interface(
fn=visual_clustering,
inputs=[
gr.inputs.Dropdown(["blobs", "varied blobs", "aniso", "noisy moons", "noisy circles" ]),
gr.inputs.Slider(1, 10, step=1, label='Number of Clusters'),
gr.inputs.Slider(10000, 1000000, step=10000, label='Number of Samples'),
gr.inputs.Slider(0.03, 0.1, step=0.01, label='Noise'),
gr.inputs.Slider(1, 100, step=1, label='Random State'),
gr.inputs.Slider(1, 100, step=1, label='Denoising Filter Kernel Size'),
gr.inputs.Slider(1,100, step=1, label='Max Filter Kernel Size')
],
outputs=[
gr.outputs.Image(type='plot', label='Dataset'),
gr.outputs.Image(type='plot', label='Clustering Result')
],
title=title,
description=description,
)
iface.launch(debug=True) |