from typing import Sequence import numpy from sklearn.metrics import roc_curve, auc import datasets import evaluate _DESCRIPTION = """ MC-AUROC (Multi-class Area Under the Receiver Operating Characteristic Curve) is a performance metric used in multiclass classification tasks. It evaluates the ability of a model to distinguish between positive and negative classes across different threshold values. The curve is generated by plotting the true positive rate (sensitivity) against the false positive rate (1-specificity) at various threshold settings. AUROC provides a single scalar value indicating the overall discriminatory power of the model, with higher values suggesting better performance. """ _KWARGS_DESCRIPTION = """ AUROC metric for binary classification predictions. Here we use one-vs-all strategy to calculate the AUROC for multi-class classification problems. The multi-class AUROC is calculated by treating each class as the positive class and the rest as the negative class. The final score is the average of the AUROC scores for each class. Args: probabilities: list-like. Predicted probabilities or decision scores for the each class. true_labels: list-like. True labels indicating the actual class memberships (must be ordinal, starting from 0). Returns: auroc_score: float. Multi-class Area Under the Receiver Operating Characteristic Curve (MC-AUROC) score. """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class AVG_MULTICLASS_AUROC(evaluate.Metric): def _info(self): return evaluate.MetricInfo( description=_DESCRIPTION, inputs_description=_KWARGS_DESCRIPTION, citation="", features=[ datasets.Features( { "predictions":datasets.Sequence(datasets.Value("float")), "references": datasets.Value("int8") } ), ], reference_urls=[ "https://en.wikipedia.org/wiki/Receiver_operating_characteristic" ], ) def _compute(self, predictions: Sequence[Sequence[float]], references: Sequence[int]): """ Computes the average AUROC score for multi-class classification problems. """ probabilities = predictions n_classes = list(range(len(probabilities[0]))) fpr = dict() tpr = dict() roc_auc = dict() for i in range(len(n_classes)): fpr[i], tpr[i], _ = roc_curve(y_true=[1 if x == n_classes[i] else 0 for x in references], y_score=[prob[i] for prob in probabilities]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute average AUC average_auc = numpy.mean(list(roc_auc.values())) return { "mc_auroc_score": average_auc, "mc_auroc_ci": "Not implemented yet." }