CaiRou-Huang commited on
Commit
96fcbcc
1 Parent(s): dd62f9f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
4
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
5
+ license: apache-2.0
6
+ language:
7
+ - zh
8
+ widget:
9
+ - text: >-
10
+ A chat between a curious user and an artificial intelligence assistant.
11
+ The assistant gives helpful, detailed, and polite answers to the user's
12
+ questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT:
13
+ library_name: transformers
14
+ pipeline_tag: text-generation
15
+ extra_gated_heading: Acknowledge license to accept the repository.
16
+ extra_gated_prompt: Please contact the author for access.
17
+ extra_gated_button_content: Acknowledge license 同意以上內容
18
+ extra_gated_fields:
19
+ Name: text
20
+ Mail: text
21
+ Organization: text
22
+ Country: text
23
+ Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
24
+ 使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
25
+ ---
26
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
27
+
28
+ # 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
29
+
30
+ # Model Card for Taiwan LLM 7B v2.1 chat
31
+
32
+ Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
33
+ Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
34
+ This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
35
+ It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
36
+ For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
37
+
38
+
39
+ ## Model description
40
+
41
+ - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
42
+ - **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
43
+ - **Finetuned from model:** [yentinglin/Taiwan-LLM-7B-v2.0-base](https://huggingface.co/yentinglin/yentinglin/Taiwan-LLM-7B-v2.0-base)
44
+
45
+ ### Model Sources
46
+
47
+ <!-- Provide the basic links for the model. -->
48
+
49
+ - **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
50
+ - **Demo:** https://twllm.com/
51
+
52
+ ## Performance
53
+
54
+
55
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)
56
+
57
+ ## Intended uses
58
+
59
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
60
+
61
+ ```python
62
+ # pip install transformers>=4.34
63
+ # pip install accelerate
64
+
65
+ import torch
66
+ from transformers import pipeline
67
+
68
+ pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-7B-v2.1-chat", torch_dtype=torch.bfloat16, device_map="auto")
69
+
70
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
71
+ messages = [
72
+ {
73
+ "role": "system",
74
+ "content": "你是一個人工智慧助理",
75
+ },
76
+ {"role": "user", "content": "東北季風如何影響台灣氣候?"},
77
+ ]
78
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
79
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
80
+ print(outputs[0]["generated_text"])
81
+ ```
82
+
83
+ ### Training hyperparameters
84
+
85
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)
86
+
87
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)
88
+
89
+
90
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)
91
+
92
+ The following hyperparameters were used during training:
93
+ - learning_rate: 5e-05
94
+ - distributed_type: multi-GPU
95
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
96
+ - lr_scheduler_type: cosine
97
+ - lr_scheduler_warmup_ratio: 0.03
98
+ - num_epochs: 5.0
99
+
100
+ ## Citation
101
+
102
+ If you find Taiwan LLM is useful in your work, please cite it with:
103
+
104
+ ```
105
+ @misc{lin2023taiwan,
106
+ title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model},
107
+ author={Yen-Ting Lin and Yun-Nung Chen},
108
+ year={2023},
109
+ eprint={2311.17487},
110
+ archivePrefix={arXiv},
111
+ primaryClass={cs.CL}
112
+ }
113
+ ```
114
+
115
+ # Acknowledgement
116
+
117
+ Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.