import spaces import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download import os import cv2 huggingface_token = os.environ.get('HF_TOKEN') # Download the Meta-Llama-3.1-8B-Instruct model hf_hub_download( repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF", filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf", local_dir="./models", token=huggingface_token ) hf_hub_download( repo_id="bartowski/Mistral-Nemo-Instruct-2407-GGUF", filename="Mistral-Nemo-Instruct-2407-Q5_K_M.gguf", local_dir="./models", token=huggingface_token ) hf_hub_download( repo_id="bartowski/gemma-2-2b-it-GGUF", filename="gemma-2-2b-it-Q6_K_L.gguf", local_dir="./models", token=huggingface_token ) hf_hub_download( repo_id="bartowski/openchat-3.6-8b-20240522-GGUF", filename="openchat-3.6-8b-20240522-Q6_K.gguf", local_dir="./models", token=huggingface_token ) hf_hub_download( repo_id="bartowski/Llama-3-Groq-8B-Tool-Use-GGUF", filename="Llama-3-Groq-8B-Tool-Use-Q6_K.gguf", local_dir="./models", token=huggingface_token ) llm = None llm_model = None cv2.setNumThreads(1) @spaces.GPU() def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): chat_template = MessagesFormatterType.GEMMA_2 global llm global llm_model # Load model only if it's not already loaded or if a new model is selected if llm is None or llm_model != model: try: llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, # Adjust based on available GPU resources n_batch=1024, n_ctx=8192, ) llm_model = model except Exception as e: return f"Error loading model: {str(e)}" provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() # Add user and assistant messages to the history for msn in history: user = {'role': Roles.user, 'content': msn[0]} assistant = {'role': Roles.assistant, 'content': msn[1]} messages.add_message(user) messages.add_message(assistant) # Stream the response try: stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs except Exception as e: yield f"Error during response generation: {str(e)}" demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Dropdown([ 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf', 'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf', 'gemma-2-2b-it-Q6_K_L.gguf', 'openchat-3.6-8b-20240522-Q6_K.gguf', 'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf' ], value="gemma-2-2b-it-Q6_K_L.gguf", label="Model" ), gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", ), gr.Slider( minimum=0, maximum=100, value=40, step=1, label="Top-k", ), gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", ), ], retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", title="Chat with lots of Models and LLMs using llama.cpp", chatbot=gr.Chatbot( scale=1, likeable=False, show_copy_button=True ) ) if __name__ == "__main__": demo.launch()