Spaces:
Running
Running
File size: 8,946 Bytes
1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 e33013a 1b6a5d7 d000502 1b6a5d7 d000502 fdf3450 1b6a5d7 d000502 1b6a5d7 8c99b80 1b6a5d7 fdf3450 1b6a5d7 8c99b80 133af7e 1b6a5d7 133af7e 1b6a5d7 dc6136e 1b6a5d7 fdf3450 6033709 96fa20b 6033709 96fa20b 6033709 1b6a5d7 dc6136e 01c0ffa 9cbbdcd dc6136e 3951ed3 9cbbdcd 3951ed3 9cbbdcd 3951ed3 1b6a5d7 dc6136e 9cbbdcd 01c0ffa 9cbbdcd af927dd a2477f5 dc6136e 9cbbdcd 1b6a5d7 c95fdb0 a2477f5 212669f a2477f5 212669f a2477f5 212669f a2477f5 212669f af927dd 212669f c95fdb0 3951ed3 1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import streamlit as st
import requests
def landing():
st.title("Writing Tools Prototypes")
st.markdown("Click one of the links below to see a prototype in action.")
st.page_link(rewrite_page, label="Rewrite with predictions", icon="π")
st.page_link(highlight_page, label="Highlight locations for possible edits", icon="ποΈ")
st.page_link(generate_page, label="Generate revisions", icon="π")
st.markdown("*Note*: These services send data to a remote server for processing. The server logs requests. Don't use sensitive or identifiable information on this page.")
def show_token(token):
token_display = token.replace('\n', 'β΅').replace('\t', 'β₯')
# Escape Markdown
for c in "\\`*_{}[]()#+-.!":
token_display = token_display.replace(c, "\\" + c)
return token_display
def get_prompt(*, include_generation_options, default="Rewrite this document to be more clear and concise."):
# pick a preset prompt or "other"
generation_options = [
"Summarize this document in one sentence.",
"Translate this document into Spanish.",
"Write a concise essay according to this outline.",
"Write a detailed essay according to this outline.",
]
with st.popover("Edit Prompt"):
prompt_options = [
"Rewrite this document to be ...",
*(generation_options if include_generation_options else []),
"Other"
]
prompt = st.radio("Prompt", prompt_options, help="Instructions for what the bot should do.")
if prompt.startswith("Rewrite this document to be"):
rewrite_adjs = ["clear and concise", "more detailed and engaging", "more formal and professional", "more casual and conversational", "more technical and precise", "more creative and imaginative", "more persuasive and compelling"]
prompt = "Rewrite this document to be " + st.radio("to be ...", rewrite_adjs) + "."
elif prompt == "Other":
prompt = st.text_area("Prompt", "Rewrite this document to be more clear and concise.")
return prompt
@st.cache_data
def get_preds_api(prompt, original_doc, rewrite_in_progress, k=5):
response = requests.get("https://tools.kenarnold.org/api/next_token", params=dict(prompt=prompt, original_doc=original_doc, doc_in_progress=rewrite_in_progress, k=k))
response.raise_for_status()
return response.json()['next_tokens']
def rewrite_with_predictions():
st.title("Rewrite with Predictive Text")
cols = st.columns(2)
with cols[0]:
prompt = get_prompt(include_generation_options=True)
with cols[1]:
st.write("Prompt:", prompt)
cols = st.columns(2)
with cols[0]:
doc = st.text_area("Document", "", placeholder="Paste your document here.", height=300)
st.button("Update document")
with cols[1]:
rewrite_in_progress = st.text_area("Rewrite in progress", key='rewrite_in_progress', value="", placeholder="Clicking the buttons below will update this field. You can also edit it directly; press Ctrl+Enter to apply changes.", height=300)
# strip spaces (but not newlines) to avoid a tokenization issue
rewrite_in_progress = rewrite_in_progress.rstrip(' ')
if doc.strip() == "" and rewrite_in_progress.strip() == "":
# Allow partial rewrites as a hack to enable autocomplete from the prompt
st.stop()
tokens = get_preds_api(prompt, doc, rewrite_in_progress)
def append_token(word):
st.session_state['rewrite_in_progress'] = (
rewrite_in_progress + word
)
allow_multi_word = st.checkbox("Allow multi-word predictions", value=False)
for i, (col, token) in enumerate(zip(st.columns(len(tokens)), tokens)):
with col:
if not allow_multi_word and ' ' in token[1:]:
token = token[0] + token[1:].split(' ', 1)[0]
token_display = show_token(token)
st.button(token_display, on_click=append_token, args=(token,), key=i, use_container_width=True)
@st.cache_data
def get_highlights(prompt, doc, updated_doc):
response = requests.get("https://tools.kenarnold.org/api/highlights", params=dict(prompt=prompt, doc=doc, updated_doc=updated_doc))
return response.json()['highlights']
def highlight_edits():
cols = st.columns([1, 4], vertical_alignment="center")
with cols[0]:
prompt = get_prompt(include_generation_options=False)
with cols[1]:
st.write("**Prompt**:", prompt)
doc = st.text_area(
"Document",
"Deep learning neural network technology advances are pretty cool if you are careful to use it in ways that don't take stuff from people.",
height=150
)
spans = get_highlights(prompt, doc, doc)
if len(spans) < 2:
st.write("No spans found.")
st.stop()
highest_loss = max(span['token_loss'] for span in spans[1:])
for span in spans:
span['loss_ratio'] = span['token_loss'] / highest_loss
num_different = sum(span['token'] != span['most_likely_token'] for span in spans)
loss_ratios_for_different = [span['loss_ratio'] for span in spans if span['token'] != span['most_likely_token']]
loss_ratios_for_different.sort(reverse=True)
if num_different == 0:
st.write("No possible edits found.")
st.stop()
output_container = st.container(border=True)
with st.expander("Controls"):
num_to_show = st.slider("Number of edits to show", 1, num_different, value=num_different // 2)
show_alternatives = st.checkbox("Show alternatives", value=True)
if show_alternatives:
show_all_on_hover = st.checkbox("Show all alternatives on hover", value=False)
else:
show_all_on_hover = False
min_loss = loss_ratios_for_different[num_to_show - 1]
with output_container:
highlights_component(spans, show_alternatives, min_loss, show_all_on_hover=show_all_on_hover)
if st.checkbox("Show details"):
import pandas as pd
st.write(pd.DataFrame(spans)[['token', 'token_loss', 'most_likely_token', 'loss_ratio']])
st.write("Token loss is the difference between the original token and the most likely token. The loss ratio is the token loss divided by the highest token loss in the document.")
def highlights_component(spans, show_alternatives, min_loss, show_all_on_hover=False):
import streamlit.components.v1 as components
import html
html_out = ''
for span in spans:
show = span['token'] != span['most_likely_token'] and span['loss_ratio'] >= min_loss
alternative_to_show = next(token for token in span['topk_tokens'] if token != span['token'])
show_alternative = show and show_alternatives
hover = f'<span class="alternative">{alternative_to_show}</span>'
html_out += '<span style="color: {color}" >{hover}{orig_token}</span>'.format(
color="grey" if show else "black",
orig_token=html.escape(span["token"]).replace('\n', '<br>'),
hover=hover if show_all_on_hover or show_alternative else ''
)
html_out = f"""
<style>
p.highlights-container {{
background: white;
line-height: 2.5;
}}
p.highlights-container > span {{
position: relative;
}}
p.highlights-container .alternative {{
display: none;
}}
p.highlights-container > span:hover .alternative {{
display: inline;
position: absolute;
top: -12px;
left: 5px;
min-width: 6em;
line-height: 1;
color: blue;
}}
</style>
<p class="highlights-container">{html_out}</p>
"""
return st.html(html_out)
def get_revised_docs(prompt, doc, n):
response = requests.get("https://tools.kenarnold.org/api/gen_revisions", params=dict(prompt=prompt, doc=doc, n=n))
return response.json()
def generate_revisions():
st.title("Generate revised document")
import html
prompt = get_prompt(include_generation_options=False)
st.write("Prompt:", prompt)
doc = st.text_area("Document", "", height=300)
revised_docs = get_revised_docs(prompt, doc, n=5)['revised_docs']
tabs = st.tabs([f"Draft {i+1}" for i in range(len(revised_docs))])
for i, tab in enumerate(tabs):
with tab:
st.write(revised_docs[i]['doc_text'])
rewrite_page = st.Page(rewrite_with_predictions, title="Rewrite with predictions", icon="π")
highlight_page = st.Page(highlight_edits, title="Highlight locations for possible edits", icon="ποΈ")
generate_page = st.Page(generate_revisions, title="Generate revisions", icon="π")
# Manually specify the sidebar
page = st.navigation([
st.Page(landing, title="Home", icon="π "),
highlight_page,
rewrite_page,
generate_page
])
page.run()
|