CarolXia commited on
Commit
9ae9e39
·
1 Parent(s): 7bfd06b

Reduce sample size and increase epochs

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -3,6 +3,7 @@ import streamlit as st
3
  from datasets import load_dataset
4
 
5
  import numpy as np
 
6
  from sklearn.metrics import accuracy_score, precision_recall_fscore_support
7
 
8
  import torch
@@ -13,6 +14,7 @@ from torch.utils.data import DataLoader
13
  from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification
14
  from transformers import DebertaV2Config, DebertaV2ForTokenClassification
15
 
 
16
 
17
  # print weights
18
  def print_trainable_parameters(model):
@@ -44,7 +46,7 @@ st.write("dimension", dimension)
44
 
45
  student_model_config = teacher_model.config
46
  student_model_config.num_attention_heads = 8
47
- student_model_config.num_hidden_layers = 6
48
  student_model = DebertaV2ForTokenClassification.from_pretrained(
49
  "microsoft/mdeberta-v3-base",
50
  config=student_model_config)
@@ -59,7 +61,7 @@ if torch.cuda.is_available():
59
  # Load data.
60
  raw_dataset = load_dataset("ai4privacy/pii-masking-400k", split='train')
61
  raw_dataset = raw_dataset.filter(lambda example: example["language"].startswith("en"))
62
- raw_dataset = raw_dataset.select(range(4000))
63
  raw_dataset = raw_dataset.train_test_split(test_size=0.2)
64
  print(raw_dataset)
65
  print(raw_dataset.column_names)
@@ -175,7 +177,7 @@ def distillation_loss(student_logits, teacher_logits, true_labels, temperature,
175
  # hyperparameters
176
  batch_size = 32
177
  lr = 1e-4
178
- num_epochs = 30
179
  temperature = 2.0
180
  alpha = 0.5
181
 
 
3
  from datasets import load_dataset
4
 
5
  import numpy as np
6
+ import os
7
  from sklearn.metrics import accuracy_score, precision_recall_fscore_support
8
 
9
  import torch
 
14
  from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification
15
  from transformers import DebertaV2Config, DebertaV2ForTokenClassification
16
 
17
+ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
18
 
19
  # print weights
20
  def print_trainable_parameters(model):
 
46
 
47
  student_model_config = teacher_model.config
48
  student_model_config.num_attention_heads = 8
49
+ student_model_config.num_hidden_layers = 4
50
  student_model = DebertaV2ForTokenClassification.from_pretrained(
51
  "microsoft/mdeberta-v3-base",
52
  config=student_model_config)
 
61
  # Load data.
62
  raw_dataset = load_dataset("ai4privacy/pii-masking-400k", split='train')
63
  raw_dataset = raw_dataset.filter(lambda example: example["language"].startswith("en"))
64
+ raw_dataset = raw_dataset.select(range(2000))
65
  raw_dataset = raw_dataset.train_test_split(test_size=0.2)
66
  print(raw_dataset)
67
  print(raw_dataset.column_names)
 
177
  # hyperparameters
178
  batch_size = 32
179
  lr = 1e-4
180
+ num_epochs = 300
181
  temperature = 2.0
182
  alpha = 0.5
183