Spaces:
Sleeping
Sleeping
CarolXia
commited on
Commit
·
61ad5f0
0
Parent(s):
initial commit
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +212 -0
- requirements.txt +14 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Traceforce
|
3 |
+
emoji: 🦀
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.40.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: other
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
# from gliner import GLiNER
|
3 |
+
from datasets import load_dataset
|
4 |
+
import evaluate
|
5 |
+
import numpy as np
|
6 |
+
import threading
|
7 |
+
import time
|
8 |
+
from peft import prepare_model_for_kbit_training
|
9 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
10 |
+
import torch
|
11 |
+
from torch.profiler import profile, record_function, ProfilerActivity
|
12 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, Trainer, TrainingArguments
|
13 |
+
|
14 |
+
|
15 |
+
seqeval = evaluate.load("seqeval")
|
16 |
+
|
17 |
+
# id2label = {0: "O"}
|
18 |
+
# label2id = {"O": 0}
|
19 |
+
# def build_id2label(examples):
|
20 |
+
# for i, label in enumerate(examples["mbert_token_classes"]):
|
21 |
+
# if label.startswith("I-") and label not in label2id:
|
22 |
+
# current_len = len(id2label)
|
23 |
+
# id2label[current_len] = label
|
24 |
+
# label2id[label] = current_len
|
25 |
+
|
26 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
27 |
+
# True
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
30 |
+
|
31 |
+
# Load the fine-tuned GLiNER model
|
32 |
+
st.write('Loading the pretrained model ...')
|
33 |
+
model_name = "iiiorg/piiranha-v1-detect-personal-information"
|
34 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
+
|
37 |
+
print(model)
|
38 |
+
|
39 |
+
# Prepare model for LoRA training
|
40 |
+
model.train() # model in evaluation mode (dropout modules are activated)
|
41 |
+
# enable gradient check pointing
|
42 |
+
model.gradient_checkpointing_enable()
|
43 |
+
|
44 |
+
# enable quantized training
|
45 |
+
model = prepare_model_for_kbit_training(model)
|
46 |
+
|
47 |
+
# LoRA config
|
48 |
+
config = LoraConfig(
|
49 |
+
r=8,
|
50 |
+
lora_alpha=32,
|
51 |
+
target_modules=["query_proj"],
|
52 |
+
lora_dropout=0.05,
|
53 |
+
bias="none",
|
54 |
+
task_type=TaskType.TOKEN_CLS
|
55 |
+
)
|
56 |
+
|
57 |
+
# LoRA trainable version of model
|
58 |
+
model = get_peft_model(model, config)
|
59 |
+
|
60 |
+
print(model)
|
61 |
+
# trainable parameter count
|
62 |
+
model.print_trainable_parameters()
|
63 |
+
|
64 |
+
# # print weights
|
65 |
+
# pytorch_total_params = sum(p.numel() for p in model.parameters())
|
66 |
+
# torch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
67 |
+
# print(f'total params: {pytorch_total_params}. tunable params: {torch_total_params}')
|
68 |
+
|
69 |
+
if torch.cuda.is_available():
|
70 |
+
model = model.to("cuda")
|
71 |
+
|
72 |
+
# Load data.
|
73 |
+
raw_dataset = load_dataset("ai4privacy/pii-masking-400k", split='train[1:1000]')
|
74 |
+
# raw_dataset = raw_dataset.filter(lambda example: example["language"].startswith("en"))
|
75 |
+
raw_dataset = raw_dataset.train_test_split(test_size=0.2)
|
76 |
+
print(raw_dataset)
|
77 |
+
print(raw_dataset.column_names)
|
78 |
+
# raw_dataset = raw_dataset.select_columns(["mbert_tokens"])
|
79 |
+
# raw_dataset = raw_dataset.rename_column("mbert_tokens", "tokens")
|
80 |
+
# raw_dataset = raw_dataset.rename_column("mbert_token_classes", "labels")
|
81 |
+
|
82 |
+
# inputs = tokenizer(
|
83 |
+
# raw_dataset['train'][0]['mbert_tokens'],
|
84 |
+
# truncation=True,
|
85 |
+
# is_split_into_words=True)
|
86 |
+
# print(inputs)
|
87 |
+
# print(inputs.tokens())
|
88 |
+
# print(inputs.word_ids())
|
89 |
+
|
90 |
+
# Build label2id and id2label
|
91 |
+
st.write("Building label mappings")
|
92 |
+
label2id = model.config.label2id
|
93 |
+
id2label = model.config.id2label
|
94 |
+
# raw_dataset.map(
|
95 |
+
# build_id2label,
|
96 |
+
# batched=False)
|
97 |
+
|
98 |
+
st.write("id2label: ", model.config.id2label)
|
99 |
+
st.write("label2id: ", model.config.label2id)
|
100 |
+
|
101 |
+
# function to align labels with tokens
|
102 |
+
# --> special tokens: -100 label id (ignored by cross entropy),
|
103 |
+
# --> if tokens are inside a word, replace 'B-' with 'I-'
|
104 |
+
def align_labels_with_tokens(labels):
|
105 |
+
aligned_label_ids = []
|
106 |
+
aligned_label_ids.append(-100)
|
107 |
+
for i, label in enumerate(labels):
|
108 |
+
if label.startswith("B-"):
|
109 |
+
label = label.replace("B-", "I-")
|
110 |
+
aligned_label_ids.append(label2id[label])
|
111 |
+
aligned_label_ids.append(-100)
|
112 |
+
return aligned_label_ids
|
113 |
+
|
114 |
+
# create tokenize function
|
115 |
+
def tokenize_function(examples):
|
116 |
+
# tokenize and truncate text. The examples argument would have already stripped
|
117 |
+
# the train or test label.
|
118 |
+
new_labels = []
|
119 |
+
inputs = tokenizer(
|
120 |
+
examples['mbert_tokens'],
|
121 |
+
is_split_into_words=True,
|
122 |
+
padding=True,
|
123 |
+
truncation=True,
|
124 |
+
max_length=512)
|
125 |
+
for _, labels in enumerate(examples['mbert_token_classes']):
|
126 |
+
new_labels.append(align_labels_with_tokens(labels))
|
127 |
+
|
128 |
+
inputs["labels"] = new_labels
|
129 |
+
return inputs
|
130 |
+
|
131 |
+
# tokenize training and validation datasets
|
132 |
+
tokenized_data = raw_dataset.map(
|
133 |
+
tokenize_function,
|
134 |
+
batched=True)
|
135 |
+
# data collator
|
136 |
+
data_collator = DataCollatorForTokenClassification(tokenizer)
|
137 |
+
|
138 |
+
st.write(tokenized_data["train"][:2]["labels"])
|
139 |
+
|
140 |
+
import os
|
141 |
+
|
142 |
+
# Print all CUDA environment variables
|
143 |
+
for key, value in os.environ.items():
|
144 |
+
if "CUDA" in key.upper():
|
145 |
+
print(f"{key}={value}")
|
146 |
+
|
147 |
+
def compute_metrics(eval_preds):
|
148 |
+
logits, labels = eval_preds
|
149 |
+
predictions = np.argmax(logits, axis=-1)
|
150 |
+
|
151 |
+
# Remove ignored index (special tokens) and convert to labels
|
152 |
+
true_labels = [[id2label[l] for l in label if l != -100] for label in labels]
|
153 |
+
true_predictions = [
|
154 |
+
[id2label[p] for (p, l) in zip(prediction, label) if l != -100]
|
155 |
+
for prediction, label in zip(predictions, labels)
|
156 |
+
]
|
157 |
+
all_metrics = seqeval.compute(predictions=true_predictions, references=true_labels)
|
158 |
+
return {
|
159 |
+
"precision": all_metrics["overall_precision"],
|
160 |
+
"recall": all_metrics["overall_recall"],
|
161 |
+
"f1": all_metrics["overall_f1"],
|
162 |
+
"accuracy": all_metrics["overall_accuracy"],
|
163 |
+
}
|
164 |
+
|
165 |
+
# hyperparameters
|
166 |
+
lr = 2e-4
|
167 |
+
batch_size = 4
|
168 |
+
num_epochs = 4
|
169 |
+
output_dir = "xia-lora-deberta-v2"
|
170 |
+
|
171 |
+
# define training arguments
|
172 |
+
training_args = TrainingArguments(
|
173 |
+
output_dir= output_dir,
|
174 |
+
learning_rate=lr,
|
175 |
+
per_device_train_batch_size=batch_size,
|
176 |
+
per_device_eval_batch_size=batch_size,
|
177 |
+
num_train_epochs=num_epochs,
|
178 |
+
weight_decay=0.01,
|
179 |
+
logging_strategy="epoch",
|
180 |
+
evaluation_strategy="epoch",
|
181 |
+
save_strategy="epoch",
|
182 |
+
load_best_model_at_end=True,
|
183 |
+
gradient_accumulation_steps=4,
|
184 |
+
warmup_steps=2,
|
185 |
+
fp16=True,
|
186 |
+
optim="paged_adamw_8bit",
|
187 |
+
)
|
188 |
+
|
189 |
+
# configure trainer
|
190 |
+
trainer = Trainer(
|
191 |
+
model=model,
|
192 |
+
train_dataset=tokenized_data["train"],
|
193 |
+
eval_dataset=tokenized_data["test"],
|
194 |
+
args=training_args,
|
195 |
+
data_collator=data_collator,
|
196 |
+
compute_metrics=compute_metrics
|
197 |
+
)
|
198 |
+
|
199 |
+
# train model
|
200 |
+
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
201 |
+
trainer.train()
|
202 |
+
|
203 |
+
# renable warnings
|
204 |
+
model.config.use_cache = True
|
205 |
+
|
206 |
+
st.write('Pushing model to huggingface')
|
207 |
+
|
208 |
+
# Push model to huggingface
|
209 |
+
hf_name = 'CarolXia' # your hf username or org name
|
210 |
+
model_id = hf_name + "/" + output_dir
|
211 |
+
model.push_to_hub(model_id, token=st.secrets["HUGGINGFACE_TOKEN"])
|
212 |
+
trainer.push_to_hub(model_id, token=st.secrets["HUGGINGFACE_TOKEN"])
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto-gptq
|
2 |
+
bitsandbytes
|
3 |
+
datasets
|
4 |
+
evaluate
|
5 |
+
seqeval
|
6 |
+
gliner
|
7 |
+
torch>=2.0.0
|
8 |
+
transformers>=4.38.2
|
9 |
+
huggingface_hub>=0.21.4
|
10 |
+
onnxruntime
|
11 |
+
optimum
|
12 |
+
peft
|
13 |
+
sentencepiece
|
14 |
+
tqdm
|