import os import streamlit as st from transformers import T5ForConditionalGeneration, T5Tokenizer import torch # Define the model path and check if it exists model_path = "Cegil/code_generation/pytorch_model.bin" # Update to your model's actual path if not os.path.exists(model_path): raise FileNotFoundError(f"Model path '{model_path}' does not exist.") # Load the model and tokenizer code_gen_model = T5ForConditionalGeneration.from_pretrained(model_path) tokenizer = T5Tokenizer.from_pretrained(model_path) # Streamlit UI st.title("Code Generation Interface") # Input prompt for code generation prompt = st.text_input("Enter your code generation prompt:", "Example prompt") # Button to generate code if st.button("Generate Code"): # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt") # Ensure input is properly tokenized # Generate code using the code generation model output = code_gen_model.generate(inputs['input_ids']) # Decode the output to get the generated code generated_code = tokenizer.decode(output[0], skip_special_tokens=True) # Display the generated code in a formatted way st.write("Generated Code:") st.code(generated_code)