Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
4 |
+
from datasets import load_dataset, Dataset
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
# Load the dataset
|
8 |
+
ds = load_dataset("bitext/Bitext-customer-support-llm-chatbot-training-dataset")
|
9 |
+
|
10 |
+
# Convert the dataset to a pandas DataFrame
|
11 |
+
df = ds['train'].to_pandas()
|
12 |
+
|
13 |
+
# Define labels based on your intent categories
|
14 |
+
label2id = {label: idx for idx, label in enumerate(df['intent'].unique())}
|
15 |
+
id2label = {idx: label for label, idx in label2id.items()}
|
16 |
+
|
17 |
+
# Encode labels
|
18 |
+
df['label'] = df['intent'].map(label2id)
|
19 |
+
|
20 |
+
# Ensure 'instruction', 'label', 'intent', and 'response' columns are included
|
21 |
+
df = df[['instruction', 'label', 'intent', 'response']]
|
22 |
+
|
23 |
+
# Load the tokenizer and model
|
24 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
25 |
+
model = RobertaForSequenceClassification.from_pretrained('path_to_your_saved_model_directory')
|
26 |
+
|
27 |
+
# Ensure the model is in evaluation mode
|
28 |
+
model.eval()
|
29 |
+
|
30 |
+
# Function to get the predicted intent and response
|
31 |
+
def get_intent_and_response(instruction):
|
32 |
+
# Tokenize the input instruction
|
33 |
+
inputs = tokenizer(instruction, return_tensors="pt", truncation=True, padding='max_length', max_length=128)
|
34 |
+
|
35 |
+
# Perform inference
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
logits = outputs.logits
|
39 |
+
predicted_label_id = torch.argmax(logits, dim=1).item()
|
40 |
+
|
41 |
+
# Decode the predicted label to get the intent
|
42 |
+
predicted_intent = id2label[predicted_label_id]
|
43 |
+
|
44 |
+
# Fetch the appropriate response based on the predicted intent
|
45 |
+
response = df[df['intent'] == predicted_intent].iloc[0]['response']
|
46 |
+
|
47 |
+
return predicted_intent, response
|
48 |
+
|
49 |
+
# Streamlit app setup
|
50 |
+
st.title("Customer Support Chatbot")
|
51 |
+
st.write("Ask a question, and I'll do my best to help you.")
|
52 |
+
|
53 |
+
instruction = st.text_input("You:")
|
54 |
+
|
55 |
+
if st.button("Submit"):
|
56 |
+
if instruction:
|
57 |
+
predicted_intent, response = get_intent_and_response(instruction)
|
58 |
+
st.write(f"**Predicted Intent:** {predicted_intent}")
|
59 |
+
st.write(f"**Assistant:** {response}")
|
60 |
+
else:
|
61 |
+
st.write("Please enter an instruction.")
|
62 |
+
|
63 |
+
if st.button("Exit"):
|
64 |
+
st.write("Exiting the chat.")
|