File size: 18,053 Bytes
f5e14cc 42a6eae f5e14cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import streamlit as st
import streamlit_option_menu as som
import plotly.graph_objects as go
import pandas as pd
import csv
import json
st.set_page_config(page_title="MUP", page_icon="bar-chart", layout = "wide")
#hiding default elememnts
hide_meu = """<style> #MainMenu {visibility: hidden;}
footer {visibility: hidden;} </style>"""
st.markdown(hide_meu, unsafe_allow_html=True)
main_bar_selected = som.option_menu(None, ["Home", "University View", "Institutional Comparison"], icons = ["house-fill", "building", "book-fill"], orientation = "horizontal")
st.write("####")
def display_home_page():
st.markdown('<h1 style="text-align: center; color: black; font: serif">MUP: Measuring University Performance</h1>', unsafe_allow_html=True)
st.write("##")
col1, col2 = st.columns([2, 1])
with col1:
st.markdown('<h2 style=" color: black;">Blazing fast university analytics at your fingertips</h2>', unsafe_allow_html=True)
st.markdown('<h3 style=" color: black;">Administrators looking for peer institution data?</h3>', unsafe_allow_html=True)
st.markdown('<h3 style=" color: black;">Students finding the right institution for your research career?</h3>', unsafe_allow_html=True)
st.markdown('<h3 style=" color: black;">Researchers looking for the right university for your careers?</h3>', unsafe_allow_html=True)
st.markdown('<h2 style=" color: black;">You have come to the right place!</h2>', unsafe_allow_html=True)
with col2:
st.image('data/chart_image.jpeg')
def display_uni_view_page():
#code to filter by type and select the institutions
col1, col2 = st.columns(2)
with col1:
type_select = st.radio("Filter by Institution Type", ["All", "Private", "Public"], horizontal=True)
with col2:
view_type = st.radio("View Type", ["Latest Stats", "Chart View"], horizontal=True)
institution_list = []
if type_select == "Private":
with open("data/private_institution_list.csv", "r") as f:
reader = csv.reader(f)
for row in reader:
institution_list.append(row[0])
elif type_select == "Public":
with open("data/public_institution_list.csv", "r") as f:
reader = csv.reader(f)
for row in reader:
institution_list.append(row[0])
else:
with open("data/institution_list.csv", "r") as f:
reader = csv.reader(f)
for row in reader:
institution_list.append(row[0])
institution_select = st.selectbox("Select colleges to view", options = institution_list)
st.write("##")
def load_data(input_file_path, institution_name):
data = pd.read_excel(input_file_path)
data = data[data["Institution"] == institution_name]
return data
aamc = load_data("data/aamc.xlsx", institution_select)
doctorates = load_data("data/doctorates.xlsx", institution_select)
endowment = load_data("data/endowment.xlsx", institution_select)
faculty_awards = load_data("data/faculty_awards.xlsx", institution_select)
federal_research = load_data("data/federal_research.xlsx", institution_select)
giving = load_data("data/giving.xlsx", institution_select)
headcount = load_data("data/headcount.xlsx", institution_select)
national_academy = load_data("data/national_academy.xlsx", institution_select)
non_federal_research = load_data("data/non_federal_research.xlsx", institution_select)
postdocs = load_data("data/postdocs.xlsx", institution_select)
rnd_federal = load_data("data/rnd_by_discipline_federal.xlsx", institution_select)
rnd_total = load_data("data/rnd_by_discipline_total.xlsx", institution_select)
total_research = load_data("data/total_research.xlsx", institution_select)
def latest_stats(institution_select):
display_dict = {}
display_dict['Medical Research Spending (in USD)']= str(int(aamc['2018']) / 1000000) + " Million"
display_dict["PhD's graduated"]= int(doctorates['2018'])
display_dict["Endowment (in USD)"]= str(int(endowment['2018']) / 1000000) + " Million"
display_dict["Number of annual Faculty Awards"]= int(faculty_awards['2018'])
display_dict["Federal Research Spending (in USD)"]= str(int(federal_research['2018']) / 1000000) + " Million"
display_dict["Annual Giving (in USD)"]= str(int(giving['2018']) / 1000000) + " Million"
display_dict["Student Headcount"]= int(headcount['2018'])
display_dict["National Academy Members"]= int(national_academy['2018'])
display_dict["Non-Federal Research Spending (in USD)"]= str(int(non_federal_research['2018']) / 1000000) + " Million"
display_dict["Postdoctoral Fellows"]= int(postdocs['2018'])
display_dict["Total Research Spending (in USD)"]= str(int(total_research['2018']) / 1000000) + " Million"
df = pd.DataFrame.from_dict(display_dict, orient='index')
df.rename(columns = {0:'Values'}, inplace = True)
st.markdown('<h3 style="text-align: center; color: black; font: serif">Table View</h3>', unsafe_allow_html=True)
st.table(df.astype(str))
col1, col2 = st.columns(2)
with col1:
st.download_button("Download this data as CSV", data = df.to_csv(), file_name = str(institution_select) + "_at_a_glance.csv")
with col2:
st.download_button("Download this data as JSON", data = json.dumps(display_dict), file_name = str(institution_select) + "_at_a_glance.json")
def chart_view(institution_select):
#figure details should have x-axis title and y-axis title, in that order
def plot_helper(df, figure_details):
data = df.copy()
series = data.T[3:][::-1]
series.reset_index(inplace=True)
series.columns = ["Year", "Value"]
figure = go.Figure()
figure.add_trace(go.Scatter(x=series["Year"], y=series["Value"], name=list(data['Institution'])[0]))
del data
figure.update_layout(height = 600, width = 900, legend_orientation = 'h', xaxis_title = figure_details[0],
yaxis_title = figure_details[1], font = dict(family = 'Serif'))
figure.update_xaxes(nticks = 5)
figure.update_yaxes(rangemode="tozero")
return figure
line_charts = []
line_charts.append(plot_helper(federal_research, ["Year", "Spending"])) #0
line_charts.append(plot_helper(total_research, ["Year", "Spending"])) #1
line_charts.append(plot_helper(aamc, ["Year", "Spending"])) #2
line_charts.append(plot_helper(endowment, ["Year", "Fund size"])) #3
line_charts.append(plot_helper(giving, ["Year", "Giving"])) #4
line_charts.append(plot_helper(doctorates, ["Year", "Number of PhD's"])) #5
line_charts.append(plot_helper(postdocs, ["Year", "Number of Fellows"])) #6
line_charts.append(plot_helper(headcount, ["Year", "Headcount"])) #7
line_charts.append(plot_helper(national_academy, ["Year", "Number of Members"])) #8
line_charts.append(plot_helper(faculty_awards, ["Year", "Number of Awards"]))#9
rnd_fed_subjects = ["Fed_Life_Sci", "Fed_Phy_Sci", "Fed_Envir_Sci", "Fed_Eng","Fed_Comp_Sci", "Fed_Math","Fed_Psych","Fed_Social_Sci","Fed_Other_Sci"]
rnd_total_subjects = ["Tot_Life_Sci", "Tot_Phy_Sci", "Tot_Envir_Sci", "Tot_Eng","Tot_Comp_Sci", "Tot_Math","Tot_Psych","Tot_Social_Sci","Tot_Other_Sci"]
rnd_fed_bar = rnd_federal[rnd_fed_subjects]
rnd_fed_bar.reset_index(inplace=True)
rnd_fed_bar = rnd_fed_bar.T[1:]
fed_xlist = list(rnd_fed_bar.index)
fed_ylist = list(rnd_fed_bar[0])
rnd_fed_figure = go.Figure()
rnd_fed_figure.add_trace(go.Bar(x=fed_xlist, y=fed_ylist))
rnd_fed_figure.update_layout(xaxis_title = "Discipline", yaxis_title = "R&D (in USD)", font = dict(family = 'Serif'))
rnd_total_bar = rnd_total[rnd_total_subjects]
rnd_total_bar.reset_index(inplace=True)
rnd_total_bar = rnd_total_bar.T[1:]
total_xlist = list(rnd_total_bar.index)
total_ylist = list(rnd_total_bar[0])
rnd_total_figure = go.Figure()
rnd_total_figure.add_trace(go.Bar(x=total_xlist, y=total_ylist))
rnd_total_figure.update_layout(xaxis_title = "Discipline", yaxis_title = "R&D (in USD)", font = dict(family = 'Serif'))
col1, col2 = st.columns(2)
with col1:
st.write("<h3 style='text-align: center; color: black;'>" + "Federal Research Spending (in USD)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[0], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Medical Research Spending (in USD)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[2], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Annual Giving (in USD)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[4], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Number of Postdoctoral Fellows" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[6], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Number of National Academy Members" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[8], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "R&D Breakup (Federal Dollars)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(rnd_fed_figure, use_container_width=True)
with col2:
st.write("<h3 style='text-align: center; color: black;'>" + "Total Research Spending (in USD)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[1], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Endowment Size (in USD)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[3], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Number of PhD's graduated" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[5], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Total Student Headcount (all levels)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[7], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Annual Faculty Awards achieved" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(line_charts[9], use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "R&D Breakup (All Dollars)" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(rnd_total_figure, use_container_width=True)
if view_type == "Latest Stats":
latest_stats(institution_select)
elif view_type == "Chart View":
chart_view(institution_select)
def display_institution_comparison():
col1, col2 = st.columns(2)
with col1:
type_select = st.radio("Filter by Institution Type", ["All", "Private", "Public"], horizontal=True)
with col2:
view = st.selectbox("Choose a view", ["Researcher View", "Recruiter View"])
institution_list = []
if type_select == "Private":
with open("data/private_institution_list.csv", "r") as f:
reader = csv.reader(f)
for row in reader:
institution_list.append(row[0])
elif type_select == "Public":
with open("data/public_institution_list.csv", "r") as f:
reader = csv.reader(f)
for row in reader:
institution_list.append(row[0])
else:
with open("data/institution_list.csv", "r") as f:
reader = csv.reader(f)
for row in reader:
institution_list.append(row[0])
institution_mselect = st.multiselect("Select Institutions to Compare",
options = institution_list, help = "For best results, select 2-3 institutions")
def load_data(input_file_path, institution_list):
data = pd.read_excel(input_file_path)
data = data[data["Institution"].isin(institution_list)]
return data
def plot_helper(df, figure_details):
data = df.copy()
series = (data.drop(columns = ["UnitID", "Control"]).T)
series.columns = series.iloc[0]
series.reset_index(inplace=True)
series = series.iloc[1:, :][::-1]
series.rename(columns = {"index": "Year"}, inplace = True)
figure = go.Figure()
for i in institution_mselect:
#add a line chart for each institution
figure.add_trace(go.Scatter(x = series["Year"], y = series[i], name = i))
figure.update_layout(height = 600, width = 900, legend_orientation = 'h', xaxis_title = figure_details[0],
yaxis_title = figure_details[1], legend_title = "Institution Key", font = dict(family = 'Serif'))
figure.update_xaxes(nticks = 5)
figure.update_yaxes(rangemode = "tozero")
del data
return figure
doctorates = load_data("data/doctorates.xlsx", institution_mselect)
faculty_awards = load_data("data/faculty_awards.xlsx", institution_mselect)
federal_research = load_data("data/federal_research.xlsx", institution_mselect)
national_academy = load_data("data/national_academy.xlsx", institution_mselect)
postdocs = load_data("data/postdocs.xlsx", institution_mselect)
total_research = load_data("data/total_research.xlsx", institution_mselect)
giving = load_data("data/giving.xlsx", institution_mselect)
headcount = load_data("data/headcount.xlsx", institution_mselect)
rnd_fed = load_data("data/rnd_by_discipline_federal.xlsx", institution_mselect)
rnd_total = load_data("data/rnd_by_discipline_total.xlsx", institution_mselect)
def researcher_content_writer():
st.write("##")
st.write("<h3 style='text-align: center; color: black;'>" + "Researcher View" + "</h3>", unsafe_allow_html=True)
st.write("##")
col1, col2 = st.columns(2)
with col1:
st.write("<h3 style='text-align: center; color: black;'>" + "Number of PhD's graduated" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(doctorates, ["Year", "Number of PhD's graduated"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Federal Research Spending" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(federal_research, ["Year", "Spending (in USD)"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "National Academy Members" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(national_academy, ["Year", "Number of Academy Members"]), use_container_width=True)
with col2:
st.write("<h3 style='text-align: center; color: black;'>" + "Number of Postdoctoral Fellows" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(postdocs, ["Year", "Number of Postdocs"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Total Research Spending" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(total_research, ["Year", "Spending (in USD)"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Annual Faculty Awards achieved" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(faculty_awards, ["Year", "Number of Awards"]), use_container_width=True)
def recruiter_content_writer():
st.write("##")
st.write("<h3 style='text-align: center; color: black;'>" + "Recruiter View" + "</h3>", unsafe_allow_html=True)
st.write("##")
col1, col2 = st.columns(2)
with col1:
st.write("<h3 style='text-align: center; color: black;'>" + "Total Research Spending" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(total_research, ["Year", "Spending (in USD)"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Number of PhD's graduated" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(doctorates, ["Year", "Number of PhD's graduated"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "National Academy Members" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(national_academy, ["Year", "Number of Academy Members"]), use_container_width=True)
with col2:
st.write("<h3 style='text-align: center; color: black;'>" + "Annual Giving" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(giving, ["Year", "Annual Giving (in USD)"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Total Student Headcount" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(headcount, ["Year", "Headcount"]), use_container_width=True)
st.write("<h3 style='text-align: center; color: black;'>" + "Annual Faculty Awards achieved" + "</h3>", unsafe_allow_html=True)
st.plotly_chart(plot_helper(faculty_awards, ["Year", "Number of Awards"]), use_container_width=True)
if view == "Researcher View":
researcher_content_writer()
elif view == "Recruiter View":
recruiter_content_writer()
if main_bar_selected == "Home":
display_home_page()
elif main_bar_selected == "University View":
display_uni_view_page()
elif main_bar_selected == "Institutional Comaprison":
display_institution_comparison() |