File size: 18,053 Bytes
f5e14cc
 
 
 
 
 
 
 
 
 
 
 
 
 
42a6eae
f5e14cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import streamlit as st
import streamlit_option_menu as som
import plotly.graph_objects as go
import pandas as pd
import csv
import json

st.set_page_config(page_title="MUP", page_icon="bar-chart", layout = "wide")

#hiding default elememnts
hide_meu = """<style> #MainMenu {visibility: hidden;}
                footer {visibility: hidden;} </style>"""
st.markdown(hide_meu, unsafe_allow_html=True)

main_bar_selected = som.option_menu(None, ["Home", "University View", "Institutional Comparison"], icons = ["house-fill", "building", "book-fill"], orientation = "horizontal")
st.write("####")

def display_home_page():
    st.markdown('<h1 style="text-align: center; color: black; font: serif">MUP: Measuring University Performance</h1>', unsafe_allow_html=True)
    st.write("##")
    
    col1, col2 = st.columns([2, 1])

    with col1:
        st.markdown('<h2 style=" color: black;">Blazing fast university analytics at your fingertips</h2>', unsafe_allow_html=True)
        st.markdown('<h3 style=" color: black;">Administrators looking for peer institution data?</h3>', unsafe_allow_html=True)
        st.markdown('<h3 style=" color: black;">Students finding the right institution for your research career?</h3>', unsafe_allow_html=True)
        st.markdown('<h3 style=" color: black;">Researchers looking for the right university for your careers?</h3>', unsafe_allow_html=True)
        st.markdown('<h2 style=" color: black;">You have come to the right place!</h2>', unsafe_allow_html=True)
   
    with col2:
        st.image('data/chart_image.jpeg')

def display_uni_view_page():

    #code to filter by type and select the institutions
    col1, col2 = st.columns(2)
    with col1:
        type_select = st.radio("Filter by Institution Type", ["All", "Private", "Public"], horizontal=True)
    with col2:
        view_type = st.radio("View Type", ["Latest Stats", "Chart View"], horizontal=True)

    institution_list = []
    if type_select == "Private":
        with open("data/private_institution_list.csv", "r") as f:
            reader = csv.reader(f)
            for row in reader:
                institution_list.append(row[0])
    elif type_select == "Public":
        with open("data/public_institution_list.csv", "r") as f:
            reader = csv.reader(f)
            for row in reader:
                institution_list.append(row[0])
    else:
        with open("data/institution_list.csv", "r") as f:
            reader = csv.reader(f)
            for row in reader:
                institution_list.append(row[0])

    institution_select = st.selectbox("Select colleges to view", options = institution_list)
    st.write("##")

    def load_data(input_file_path, institution_name):
        data = pd.read_excel(input_file_path)
        data = data[data["Institution"] == institution_name]
        return data

    aamc = load_data("data/aamc.xlsx", institution_select)
    doctorates = load_data("data/doctorates.xlsx", institution_select)
    endowment = load_data("data/endowment.xlsx", institution_select)
    faculty_awards = load_data("data/faculty_awards.xlsx", institution_select)
    federal_research = load_data("data/federal_research.xlsx", institution_select)
    giving = load_data("data/giving.xlsx", institution_select)
    headcount = load_data("data/headcount.xlsx", institution_select)
    national_academy = load_data("data/national_academy.xlsx", institution_select)
    non_federal_research = load_data("data/non_federal_research.xlsx", institution_select)
    postdocs = load_data("data/postdocs.xlsx", institution_select)
    rnd_federal = load_data("data/rnd_by_discipline_federal.xlsx", institution_select)
    rnd_total = load_data("data/rnd_by_discipline_total.xlsx", institution_select)
    total_research = load_data("data/total_research.xlsx", institution_select)

    def latest_stats(institution_select):
        display_dict = {}
        display_dict['Medical Research Spending (in USD)']= str(int(aamc['2018']) / 1000000) + " Million"
        display_dict["PhD's graduated"]=  int(doctorates['2018'])
        display_dict["Endowment (in USD)"]= str(int(endowment['2018']) / 1000000) + " Million"
        display_dict["Number of annual Faculty Awards"]= int(faculty_awards['2018'])
        display_dict["Federal Research Spending (in USD)"]= str(int(federal_research['2018']) / 1000000) + " Million"
        display_dict["Annual Giving (in USD)"]= str(int(giving['2018']) / 1000000) + " Million"
        display_dict["Student Headcount"]= int(headcount['2018'])
        display_dict["National Academy Members"]= int(national_academy['2018'])
        display_dict["Non-Federal Research Spending (in USD)"]= str(int(non_federal_research['2018']) / 1000000) + " Million"
        display_dict["Postdoctoral Fellows"]= int(postdocs['2018'])
        display_dict["Total Research Spending (in USD)"]= str(int(total_research['2018']) / 1000000) + " Million"
        df = pd.DataFrame.from_dict(display_dict, orient='index')
        df.rename(columns = {0:'Values'}, inplace = True)
        st.markdown('<h3 style="text-align: center; color: black; font: serif">Table View</h3>', unsafe_allow_html=True)
        st.table(df.astype(str))
        col1, col2 = st.columns(2)
        with col1:
            st.download_button("Download this data as CSV", data = df.to_csv(), file_name = str(institution_select) + "_at_a_glance.csv")
        with col2:
            st.download_button("Download this data as JSON", data = json.dumps(display_dict), file_name = str(institution_select) + "_at_a_glance.json")
    
    def chart_view(institution_select):
        #figure details should have x-axis title and y-axis title, in that order
        def plot_helper(df, figure_details):
            data = df.copy()
            series = data.T[3:][::-1]
            series.reset_index(inplace=True)
            series.columns = ["Year", "Value"]
            figure = go.Figure()
            figure.add_trace(go.Scatter(x=series["Year"], y=series["Value"], name=list(data['Institution'])[0]))
            del data
            figure.update_layout(height = 600, width = 900, legend_orientation = 'h', xaxis_title = figure_details[0],
                yaxis_title = figure_details[1], font = dict(family = 'Serif'))
            figure.update_xaxes(nticks = 5)
            figure.update_yaxes(rangemode="tozero")
            return figure

        line_charts = []
        line_charts.append(plot_helper(federal_research, ["Year", "Spending"])) #0
        line_charts.append(plot_helper(total_research, ["Year", "Spending"])) #1
        line_charts.append(plot_helper(aamc, ["Year", "Spending"])) #2
        line_charts.append(plot_helper(endowment, ["Year", "Fund size"])) #3
        line_charts.append(plot_helper(giving, ["Year", "Giving"])) #4
        line_charts.append(plot_helper(doctorates, ["Year", "Number of PhD's"])) #5
        line_charts.append(plot_helper(postdocs, ["Year", "Number of Fellows"])) #6
        line_charts.append(plot_helper(headcount, ["Year", "Headcount"])) #7
        line_charts.append(plot_helper(national_academy, ["Year", "Number of Members"])) #8
        line_charts.append(plot_helper(faculty_awards, ["Year", "Number of Awards"]))#9

        rnd_fed_subjects = ["Fed_Life_Sci", "Fed_Phy_Sci", "Fed_Envir_Sci", "Fed_Eng","Fed_Comp_Sci", "Fed_Math","Fed_Psych","Fed_Social_Sci","Fed_Other_Sci"]    
        rnd_total_subjects = ["Tot_Life_Sci", "Tot_Phy_Sci", "Tot_Envir_Sci", "Tot_Eng","Tot_Comp_Sci", "Tot_Math","Tot_Psych","Tot_Social_Sci","Tot_Other_Sci"]    
        
        rnd_fed_bar = rnd_federal[rnd_fed_subjects]
        rnd_fed_bar.reset_index(inplace=True)
        rnd_fed_bar = rnd_fed_bar.T[1:]    
        fed_xlist = list(rnd_fed_bar.index)
        fed_ylist = list(rnd_fed_bar[0])
        rnd_fed_figure = go.Figure()
        rnd_fed_figure.add_trace(go.Bar(x=fed_xlist, y=fed_ylist)) 
        rnd_fed_figure.update_layout(xaxis_title = "Discipline", yaxis_title = "R&D (in USD)", font = dict(family = 'Serif'))

        rnd_total_bar = rnd_total[rnd_total_subjects]
        rnd_total_bar.reset_index(inplace=True)
        rnd_total_bar = rnd_total_bar.T[1:]
        total_xlist = list(rnd_total_bar.index)
        total_ylist = list(rnd_total_bar[0])
        rnd_total_figure = go.Figure()
        rnd_total_figure.add_trace(go.Bar(x=total_xlist, y=total_ylist))
        rnd_total_figure.update_layout(xaxis_title = "Discipline", yaxis_title = "R&D (in USD)", font = dict(family = 'Serif'))

        col1, col2 = st.columns(2)
        with col1:
            st.write("<h3 style='text-align: center; color: black;'>" + "Federal Research Spending (in USD)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[0], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Medical Research Spending (in USD)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[2], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Annual Giving (in USD)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[4], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Number of Postdoctoral Fellows" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[6], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Number of National Academy Members" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[8], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "R&D Breakup (Federal Dollars)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(rnd_fed_figure, use_container_width=True)
        with col2:
            st.write("<h3 style='text-align: center; color: black;'>" + "Total Research Spending (in USD)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[1], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Endowment Size (in USD)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[3], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Number of PhD's graduated" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[5], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Total Student Headcount (all levels)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[7], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Annual Faculty Awards achieved" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(line_charts[9], use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "R&D Breakup (All Dollars)" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(rnd_total_figure, use_container_width=True)

    if view_type == "Latest Stats":
        latest_stats(institution_select)
    elif view_type == "Chart View":
        chart_view(institution_select)   

def display_institution_comparison():
    col1, col2 = st.columns(2)
    with col1:
        type_select = st.radio("Filter by Institution Type", ["All", "Private", "Public"], horizontal=True)
    with col2:
        view = st.selectbox("Choose a view", ["Researcher View", "Recruiter View"])
    institution_list = []
    if type_select == "Private":
        with open("data/private_institution_list.csv", "r") as f:
            reader = csv.reader(f)
            for row in reader:
                institution_list.append(row[0])
    elif type_select == "Public":
        with open("data/public_institution_list.csv", "r") as f:
            reader = csv.reader(f)
            for row in reader:
                institution_list.append(row[0])
    else:
        with open("data/institution_list.csv", "r") as f:
            reader = csv.reader(f)
            for row in reader:
                institution_list.append(row[0])
    institution_mselect = st.multiselect("Select Institutions to Compare", 
    options = institution_list, help = "For best results, select 2-3 institutions")

    def load_data(input_file_path, institution_list):
        data = pd.read_excel(input_file_path)
        data = data[data["Institution"].isin(institution_list)]
        return data

    def plot_helper(df, figure_details):
        data = df.copy()
        series = (data.drop(columns = ["UnitID", "Control"]).T)
        series.columns = series.iloc[0]
        series.reset_index(inplace=True)
        series = series.iloc[1:, :][::-1]
        series.rename(columns = {"index": "Year"}, inplace = True)
        figure = go.Figure()
        for i in institution_mselect:
            #add a line chart for each institution
            figure.add_trace(go.Scatter(x = series["Year"], y = series[i], name = i))
        figure.update_layout(height = 600, width = 900, legend_orientation = 'h', xaxis_title = figure_details[0],
         yaxis_title = figure_details[1], legend_title = "Institution Key", font = dict(family = 'Serif'))
        figure.update_xaxes(nticks = 5)
        figure.update_yaxes(rangemode = "tozero")
        del data
        return figure

    doctorates = load_data("data/doctorates.xlsx", institution_mselect)
    faculty_awards = load_data("data/faculty_awards.xlsx", institution_mselect)
    federal_research = load_data("data/federal_research.xlsx", institution_mselect)
    national_academy = load_data("data/national_academy.xlsx", institution_mselect)
    postdocs = load_data("data/postdocs.xlsx", institution_mselect)
    total_research = load_data("data/total_research.xlsx", institution_mselect)
    giving = load_data("data/giving.xlsx", institution_mselect)
    headcount = load_data("data/headcount.xlsx", institution_mselect)
    rnd_fed = load_data("data/rnd_by_discipline_federal.xlsx", institution_mselect)
    rnd_total = load_data("data/rnd_by_discipline_total.xlsx", institution_mselect)

    def researcher_content_writer():
        st.write("##")
        st.write("<h3 style='text-align: center; color: black;'>" + "Researcher View" + "</h3>", unsafe_allow_html=True)
        st.write("##")
        col1, col2 = st.columns(2)
        with col1:
            st.write("<h3 style='text-align: center; color: black;'>" + "Number of PhD's graduated" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(doctorates, ["Year", "Number of PhD's graduated"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Federal Research Spending" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(federal_research, ["Year", "Spending (in USD)"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "National Academy Members" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(national_academy, ["Year", "Number of Academy Members"]), use_container_width=True)
        with col2:
            st.write("<h3 style='text-align: center; color: black;'>" + "Number of Postdoctoral Fellows" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(postdocs, ["Year", "Number of Postdocs"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Total Research Spending" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(total_research, ["Year", "Spending (in USD)"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Annual Faculty Awards achieved" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(faculty_awards, ["Year", "Number of Awards"]), use_container_width=True)
    

    def recruiter_content_writer():
        st.write("##")
        st.write("<h3 style='text-align: center; color: black;'>" + "Recruiter View" + "</h3>", unsafe_allow_html=True)
        st.write("##")
        col1, col2 = st.columns(2)
        with col1:
            st.write("<h3 style='text-align: center; color: black;'>" + "Total Research Spending" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(total_research, ["Year", "Spending (in USD)"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Number of PhD's graduated" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(doctorates, ["Year", "Number of PhD's graduated"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "National Academy Members" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(national_academy, ["Year", "Number of Academy Members"]), use_container_width=True)
        with col2:
            st.write("<h3 style='text-align: center; color: black;'>" + "Annual Giving" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(giving, ["Year", "Annual Giving (in USD)"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Total Student Headcount" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(headcount, ["Year", "Headcount"]), use_container_width=True)
            st.write("<h3 style='text-align: center; color: black;'>" + "Annual Faculty Awards achieved" + "</h3>", unsafe_allow_html=True)
            st.plotly_chart(plot_helper(faculty_awards, ["Year", "Number of Awards"]), use_container_width=True)

    if view == "Researcher View":
        researcher_content_writer()
    elif view == "Recruiter View":
        recruiter_content_writer()

if main_bar_selected == "Home":
    display_home_page()
elif main_bar_selected == "University View":
    display_uni_view_page()
elif main_bar_selected == "Institutional Comaprison":
    display_institution_comparison()