Required files
Browse files- resnet.py +262 -0
- sample-cifar10-epoch00-val_acc0.36.ckpt +3 -0
- sample-cifar10-epoch00-val_acc0.37.ckpt +3 -0
resnet.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
from torch.utils.data import DataLoader, random_split
|
6 |
+
from torchvision.datasets import CIFAR10
|
7 |
+
import torchvision.transforms.v2 as transforms
|
8 |
+
from torchmetrics import Accuracy
|
9 |
+
from pytorch_lightning.callbacks import Callback
|
10 |
+
|
11 |
+
import os
|
12 |
+
|
13 |
+
AVAIL_GPUS = min(1, torch.cuda.device_count())
|
14 |
+
BATCH_SIZE = 256 if AVAIL_GPUS else 64
|
15 |
+
|
16 |
+
class BasicBlock(nn.Module):
|
17 |
+
expansion = 1
|
18 |
+
|
19 |
+
def __init__(self, in_planes, planes, stride=1):
|
20 |
+
super(BasicBlock, self).__init__()
|
21 |
+
self.conv1 = nn.Conv2d(
|
22 |
+
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
23 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
24 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
25 |
+
stride=1, padding=1, bias=False)
|
26 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
27 |
+
|
28 |
+
self.shortcut = nn.Sequential()
|
29 |
+
if stride != 1 or in_planes != self.expansion*planes:
|
30 |
+
self.shortcut = nn.Sequential(
|
31 |
+
nn.Conv2d(in_planes, self.expansion*planes,
|
32 |
+
kernel_size=1, stride=stride, bias=False),
|
33 |
+
nn.BatchNorm2d(self.expansion*planes)
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
38 |
+
out = self.bn2(self.conv2(out))
|
39 |
+
out += self.shortcut(x)
|
40 |
+
out = F.relu(out)
|
41 |
+
return out
|
42 |
+
|
43 |
+
class ResNet(nn.Module):
|
44 |
+
def __init__(self, block, num_blocks, num_classes=10):
|
45 |
+
super(ResNet, self).__init__()
|
46 |
+
self.in_planes = 64
|
47 |
+
|
48 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
|
49 |
+
stride=1, padding=1, bias=False)
|
50 |
+
self.bn1 = nn.BatchNorm2d(64)
|
51 |
+
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
52 |
+
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
53 |
+
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
54 |
+
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
55 |
+
self.linear = nn.Linear(512*block.expansion, num_classes)
|
56 |
+
|
57 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
58 |
+
strides = [stride] + [1]*(num_blocks-1)
|
59 |
+
layers = []
|
60 |
+
for stride in strides:
|
61 |
+
layers.append(block(self.in_planes, planes, stride))
|
62 |
+
self.in_planes = planes * block.expansion
|
63 |
+
return nn.Sequential(*layers)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
67 |
+
out = self.layer1(out)
|
68 |
+
out = self.layer2(out)
|
69 |
+
out = self.layer3(out)
|
70 |
+
out = self.layer4(out)
|
71 |
+
out = F.avg_pool2d(out, 4)
|
72 |
+
out = out.view(out.size(0), -1)
|
73 |
+
out = self.linear(out)
|
74 |
+
return out
|
75 |
+
|
76 |
+
|
77 |
+
def ResNet18():
|
78 |
+
return ResNet(BasicBlock, [2, 2, 2, 2])
|
79 |
+
|
80 |
+
|
81 |
+
def ResNet34():
|
82 |
+
return ResNet(BasicBlock, [3, 4, 6, 3])
|
83 |
+
|
84 |
+
def test():
|
85 |
+
net = ResNet18()
|
86 |
+
y = net(torch.randn(1, 3, 32, 32))
|
87 |
+
print(y.size())
|
88 |
+
|
89 |
+
class LitResNet18(pl.LightningModule):
|
90 |
+
def __init__(self, data_dir, num_classes=10, learning_rate=0.01, max_lr=1.45E-03):
|
91 |
+
super(LitResNet18, self).__init__()
|
92 |
+
self.in_planes = 64
|
93 |
+
self.data_dir = data_dir
|
94 |
+
|
95 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
|
96 |
+
stride=1, padding=1, bias=False)
|
97 |
+
self.bn1 = nn.BatchNorm2d(64)
|
98 |
+
self.layer1 = self._make_layer(BasicBlock, 64, 2, stride=1)
|
99 |
+
self.layer2 = self._make_layer(BasicBlock, 128, 2, stride=2)
|
100 |
+
self.layer3 = self._make_layer(BasicBlock, 256, 2, stride=2)
|
101 |
+
self.layer4 = self._make_layer(BasicBlock, 512, 2, stride=2)
|
102 |
+
self.linear = nn.Linear(512*BasicBlock.expansion, num_classes)
|
103 |
+
|
104 |
+
self.learning_rate = learning_rate
|
105 |
+
self.max_lr = max_lr
|
106 |
+
self.num_classes = num_classes
|
107 |
+
self.steps_per_epoch = 50000 / BATCH_SIZE
|
108 |
+
self.ds_mean = (0.4914, 0.4822, 0.4465)
|
109 |
+
self.ds_std = (0.247, 0.243, 0.261)
|
110 |
+
|
111 |
+
self.accuracy = Accuracy(task="multiclass", num_classes=num_classes)
|
112 |
+
|
113 |
+
self.train_transforms = transforms.Compose([
|
114 |
+
transforms.RandomCrop(32, padding=4),
|
115 |
+
transforms.RandomHorizontalFlip(),
|
116 |
+
transforms.ToTensor(),
|
117 |
+
transforms.Pad(16, self.ds_mean, 'constant'),
|
118 |
+
transforms.ConvertImageDtype(torch.float),
|
119 |
+
transforms.Normalize(self.ds_mean, self.ds_std),
|
120 |
+
transforms.RandomErasing(scale=(0.125, 0.125), ratio=(1, 1), value=self.ds_mean, inplace=False),
|
121 |
+
transforms.CenterCrop(32),
|
122 |
+
])
|
123 |
+
|
124 |
+
# Test data transformations
|
125 |
+
self.test_transforms = transforms.Compose([
|
126 |
+
transforms.ToTensor(),
|
127 |
+
transforms.ConvertImageDtype(torch.float),
|
128 |
+
transforms.Normalize(self.ds_mean, self.ds_std),
|
129 |
+
])
|
130 |
+
|
131 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
132 |
+
strides = [stride] + [1]*(num_blocks-1)
|
133 |
+
layers = []
|
134 |
+
for stride in strides:
|
135 |
+
layers.append(block(self.in_planes, planes, stride))
|
136 |
+
self.in_planes = planes * block.expansion
|
137 |
+
return nn.Sequential(*layers)
|
138 |
+
|
139 |
+
def forward(self, x):
|
140 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
141 |
+
out = self.layer1(out)
|
142 |
+
out = self.layer2(out)
|
143 |
+
out = self.layer3(out)
|
144 |
+
out = self.layer4(out)
|
145 |
+
out = F.avg_pool2d(out, 4)
|
146 |
+
out = out.view(out.size(0), -1)
|
147 |
+
out = self.linear(out)
|
148 |
+
return out
|
149 |
+
|
150 |
+
def configure_optimizers(self):
|
151 |
+
pct_start = 0.3
|
152 |
+
base_momentum = 0.85
|
153 |
+
max_momentum = 0.9
|
154 |
+
optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate, momentum=0.9, weight_decay=5e-4)
|
155 |
+
steps_per_epoch = int(self.trainer.estimated_stepping_batches/self.trainer.max_epochs)
|
156 |
+
# steps_per_epoch = len(train_dataloader)
|
157 |
+
pct_start = 0.3
|
158 |
+
print("max_lr:", self.max_lr, "epochs:", self.trainer.max_epochs, "steps_per_epoch:", steps_per_epoch)
|
159 |
+
scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
160 |
+
optimizer,
|
161 |
+
max_lr=self.max_lr,
|
162 |
+
epochs=self.trainer.max_epochs,
|
163 |
+
steps_per_epoch=steps_per_epoch,
|
164 |
+
pct_start=pct_start,
|
165 |
+
div_factor=10,
|
166 |
+
final_div_factor=10,
|
167 |
+
three_phase=False,
|
168 |
+
anneal_strategy='linear'
|
169 |
+
)
|
170 |
+
return([optimizer], [{'scheduler': scheduler, 'interval': 'step'}])
|
171 |
+
|
172 |
+
|
173 |
+
def training_step(self, batch, batch_idx):
|
174 |
+
x, y = batch
|
175 |
+
output = self(x)
|
176 |
+
logits = F.log_softmax(output, dim=1)
|
177 |
+
preds = torch.argmax(logits, dim=1)
|
178 |
+
self.accuracy(preds, y)
|
179 |
+
|
180 |
+
cross_entropy_loss = torch.nn.CrossEntropyLoss(reduction='mean')
|
181 |
+
loss = cross_entropy_loss(logits, y)
|
182 |
+
|
183 |
+
# Calling self.log will surface up scalars for you in TensorBoard
|
184 |
+
self.log("train_loss", loss, prog_bar=True)
|
185 |
+
self.log("train_acc", self.accuracy, prog_bar=True)
|
186 |
+
return loss
|
187 |
+
|
188 |
+
def validation_step(self, batch, batch_idx):
|
189 |
+
return self.evaluate(batch, 'val')
|
190 |
+
|
191 |
+
def test_step(self, batch, batch_idx):
|
192 |
+
return self.evaluate(batch, 'test')
|
193 |
+
|
194 |
+
def evaluate(self, batch, stage):
|
195 |
+
x, y = batch
|
196 |
+
output = self(x)
|
197 |
+
logits = F.log_softmax(output, dim=1)
|
198 |
+
preds = torch.argmax(logits, dim=1)
|
199 |
+
self.accuracy(preds, y)
|
200 |
+
|
201 |
+
cross_entropy_loss = torch.nn.CrossEntropyLoss(reduction='mean')
|
202 |
+
loss = cross_entropy_loss(logits, y)
|
203 |
+
|
204 |
+
# Calling self.log will surface up scalars for you in TensorBoard
|
205 |
+
self.log(f"{stage}_loss", loss, prog_bar=True)
|
206 |
+
self.log(f"{stage}_acc", self.accuracy, prog_bar=True)
|
207 |
+
return logits
|
208 |
+
|
209 |
+
####################
|
210 |
+
# DATA RELATED HOOKS
|
211 |
+
####################
|
212 |
+
|
213 |
+
def prepare_data(self):
|
214 |
+
# download
|
215 |
+
CIFAR10(root=self.data_dir, train=True, download=True)
|
216 |
+
CIFAR10(root=self.data_dir, train=False, download=True)
|
217 |
+
|
218 |
+
def setup(self, stage=None):
|
219 |
+
|
220 |
+
# Assign train/val datasets for use in dataloaders
|
221 |
+
if stage == "fit" or stage is None:
|
222 |
+
self.cifar10_train = CIFAR10(self.data_dir, train=True, transform=self.train_transforms)
|
223 |
+
self.cifar10_val = CIFAR10(self.data_dir, train=False, transform=self.test_transforms)
|
224 |
+
# self.cifar10_train, self.cifar10_val = random_split(cifar10_full, [45000, 5000])
|
225 |
+
|
226 |
+
# Assign test dataset for use in dataloader(s)
|
227 |
+
if stage == "test" or stage is None:
|
228 |
+
self.cifar10_test = CIFAR10(self.data_dir, train=False, transform=self.test_transforms)
|
229 |
+
|
230 |
+
def train_dataloader(self):
|
231 |
+
return DataLoader(self.cifar10_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
|
232 |
+
|
233 |
+
def val_dataloader(self):
|
234 |
+
return DataLoader(self.cifar10_val, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
|
235 |
+
|
236 |
+
def test_dataloader(self):
|
237 |
+
return DataLoader(self.cifar10_test, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
|
238 |
+
|
239 |
+
class MisclassifiedCollector(Callback):
|
240 |
+
|
241 |
+
def __init__(self):
|
242 |
+
super().__init__()
|
243 |
+
self.misclassified_data = []
|
244 |
+
self.origData = None
|
245 |
+
|
246 |
+
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=0):
|
247 |
+
data, target = batch
|
248 |
+
# print("Data shape:", data.shape)
|
249 |
+
|
250 |
+
pred_batch = outputs.argmax(dim=1).cpu().tolist()
|
251 |
+
actual_batch = target.cpu().tolist()
|
252 |
+
|
253 |
+
if (len(self.misclassified_data) < 20):
|
254 |
+
for i in range(data.shape[0]):
|
255 |
+
if pred_batch[i] != actual_batch[i]:
|
256 |
+
_misclassified_data = {
|
257 |
+
'pred': pred_batch[i],
|
258 |
+
'actual': actual_batch[i],
|
259 |
+
'data': data[i].detach().cpu().numpy()
|
260 |
+
}
|
261 |
+
self.misclassified_data.append(_misclassified_data)
|
262 |
+
# print("misclassified len:", len(self.misclassified_data))
|
sample-cifar10-epoch00-val_acc0.36.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4393eb3af9d95c114bf98630e3285621980d9e8bacfffefdb2a2e6cdb45f81d
|
3 |
+
size 89492160
|
sample-cifar10-epoch00-val_acc0.37.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2fb0bef4f23b3a6d07325b725082990d8b40523e9d207ade215c8bf5b708703
|
3 |
+
size 89492160
|