File size: 10,301 Bytes
a791811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init

from utils.arch_utils import LayerNorm2d

def initialize_weights(net_l, scale=1):
    if not isinstance(net_l, list):
        net_l = [net_l]
    for net in net_l:
        for m in net.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale  # for residual block
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias.data, 0.0)


def make_layer(block, n_layers):
    layers = []
    for _ in range(n_layers):
        layers.append(block())
    return nn.Sequential(*layers)


class ResidualBlock_noBN(nn.Module):
    '''Residual block w/o BN
    ---Conv-ReLU-Conv-+-
     |________________|
    '''

    def __init__(self, nf=64):
        super(ResidualBlock_noBN, self).__init__()
        self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)

        # initialization
        initialize_weights([self.conv1, self.conv2], 0.1)

    def forward(self, x):
        identity = x
        out = F.relu(self.conv1(x), inplace=True)
        out = self.conv2(out)
        return identity + out

class ResidualBlock(nn.Module):
    '''Residual block w/o BN
    ---Conv-ReLU-Conv-+-
     |________________|
    '''

    def __init__(self, nf=64):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.bn = nn.BatchNorm2d(nf)
        self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)

        # initialization
        initialize_weights([self.conv1, self.conv2], 0.1)

    def forward(self, x):
        identity = x
        out = F.relu(self.bn(self.conv1(x)), inplace=True)
        out = self.conv2(out)
        return identity + out

###########################################################################################################


class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2

class SGE(nn.Module):
    def __init__(self, dw_channel):
        super().__init__() 
        self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        x1 = self.dwc(x1)
        return x1 * x2
    
class SpaBlock(nn.Module):
    def __init__(self, nc, DW_Expand = 2,  FFN_Expand=2, drop_out_rate=0.):
        super(SpaBlock, self).__init__()
        dw_channel = nc * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True) # the dconv
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        
        # Simplified Channel Attention
        self.sca = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * nc
        self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(nc)
        self.norm2 = LayerNorm2d(nc)

        self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)

    def forward(self, x):

        x = self.norm1(x) # size [B, C, H, W]

        x = self.conv1(x) # size [B, 2*C, H, W]
        x = self.conv2(x) # size [B, 2*C, H, W]
        x = self.sg(x)    # size [B, C, H, W]
        x = x * self.sca(x) # size [B, C, H, W]
        x = self.conv3(x) # size [B, C, H, W]

        x = self.dropout1(x)

        y = x + x * self.beta # size [B, C, H, W]

        x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
        x = self.sg(x)  # size [B, C, H, W]
        x = self.conv5(x) # size [B, C, H, W]

        x = self.dropout2(x)

        return y + x * self.gamma

class FreBlock(nn.Module):
    def __init__(self, nc):
        super(FreBlock, self).__init__()
        self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
        self.process1 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))
        self.process2 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))

    def forward(self, x):
        _, _, H, W = x.shape
        x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
        mag = torch.abs(x_freq)
        pha = torch.angle(x_freq)
        mag = self.process1(mag)
        pha = self.process2(pha)
        real = mag * torch.cos(pha)
        imag = mag * torch.sin(pha)
        x_out = torch.complex(real, imag)
        x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')

        return x_out+x

    
class SFBlock(nn.Module):
    def __init__(self, nc, DW_Expand = 2,  FFN_Expand=2):
        super(SFBlock, self).__init__()
        dw_channel = nc * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True) # the dconv
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        
        self.fatt = FreBlock(dw_channel // 2)
        self.sge = SGE(dw_channel)

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * nc
        self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(nc)
        self.norm2 = LayerNorm2d(nc)

        self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)

    def forward(self, x):

        x = self.norm1(x) # size [B, C, H, W]

        x = self.conv1(x) # size [B, 2*C, H, W]
        x = self.conv2(x) # size [B, 2*C, H, W]
        x = self.sge(x)    # size [B, C, H, W]
      
        x = self.fatt(x)
        x = self.conv3(x) # size [B, C, H, W]

        y = x + x * self.beta # size [B, C, H, W]

        x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
        x = self.sg(x)  # size [B, C, H, W]
        x = self.conv5(x) # size [B, C, H, W]

        return y + x * self.gamma
    
class ProcessBlock(nn.Module):
    def __init__(self, in_nc, spatial = True):
        super(ProcessBlock,self).__init__()
        self.spatial = spatial
        self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
        self.frequency_process = FreBlock(in_nc)
        self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)

    def forward(self, x):
        xori = x
        x_freq = self.frequency_process(x)
        x_spatial = self.spatial_process(x)
        xcat = torch.cat([x_spatial,x_freq],1)
        x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)

        return x_out+xori

class SFNet(nn.Module):

    def __init__(self, nc,n=5):
        super(SFNet,self).__init__()

        self.list_block = list()
        for index in range(n):

            self.list_block.append(ProcessBlock(nc,spatial=False))
  
        self.block = nn.Sequential(*self.list_block)

    def forward(self, x):

        x_ori = x
        x_out = self.block(x_ori)
        xout = x_ori + x_out

        return xout

class AmplitudeNet_skip(nn.Module):
    def __init__(self, nc,n=1):
        super(AmplitudeNet_skip,self).__init__()
        
        self.conv_init = nn.Conv2d(3, nc, 1, 1, 0)
        self.conv1 = SFBlock (nc)
        self.conv2 = SFBlock (nc)
        self.conv3 = SFBlock (nc)
        self.conv_out = nn.Conv2d(nc, 3, 1, 1, 0)

    def forward(self, x):
        
        x_lr = F.interpolate(x, scale_factor=0.5, mode='bilinear') # Resize and Normalize SNR map
        
        x_lr = self.conv_init(x_lr)
        x_lr = self.conv1(x_lr)
        x_lr = self.conv2(x_lr)
        x_lr = self.conv3(x_lr)
        x_lr = self.conv_out(x_lr)
        
        xout = F.interpolate(x_lr, scale_factor=2, mode='bilinear') # Resize and Normalize SNR map
        
        return xout

    
###########################################################################################################

class SG(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2
    

class SGE(nn.Module):
    def __init__(self, dw_channel):
        super().__init__() 
        self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        x1 = self.dwc(x1)
        return x1 * x2