FLOL / archs /NAFBlock.py
danifei's picture
Update archs/NAFBlock.py
e1b9be9 verified
raw
history blame
5.82 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
# Modules from model
try:
from archs.arch_util import LayerNorm2d
import archs.arch_util as arch_util
except:
from arch_util import LayerNorm2d
import arch_util as arch_util
# Process Block 4 en SFNet y 5 bloques en AmpNet, con el spatial block aplicado en AmpNet (frequency stage)
# tal y como lo tienen ellos en su github (aunque en el paper es al revés) y no lo aplican el space stage
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
return x1 * x2
class SpaBlock(nn.Module):
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2, drop_out_rate=0.):
super(SpaBlock, self).__init__()
dw_channel = nc * DW_Expand
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True) # the dconv
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
# Simplified Channel Attention
self.sca = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * nc
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(nc)
self.norm2 = LayerNorm2d(nc)
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
def forward(self, x):
x = self.norm1(x) # size [B, C, H, W]
x = self.conv1(x) # size [B, 2*C, H, W]
x = self.conv2(x) # size [B, 2*C, H, W]
x = self.sg(x) # size [B, C, H, W]
x = x * self.sca(x) # size [B, C, H, W]
x = self.conv3(x) # size [B, C, H, W]
x = self.dropout1(x)
y = x + x * self.beta # size [B, C, H, W]
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
x = self.sg(x) # size [B, C, H, W]
x = self.conv5(x) # size [B, C, H, W]
x = self.dropout2(x)
return y + x * self.gamma
class FreBlock(nn.Module):
def __init__(self, nc):
super(FreBlock, self).__init__()
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
self.process1 = nn.Sequential(
nn.Conv2d(nc, nc, 1, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(nc, nc, 1, 1, 0))
self.process2 = nn.Sequential(
nn.Conv2d(nc, nc, 1, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(nc, nc, 1, 1, 0))
def forward(self, x):
_, _, H, W = x.shape
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
mag = torch.abs(x_freq)
pha = torch.angle(x_freq)
mag = self.process1(mag)
pha = self.process2(pha)
real = mag * torch.cos(pha)
imag = mag * torch.sin(pha)
x_out = torch.complex(real, imag)
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
return x_out+x
class ProcessBlock(nn.Module):
def __init__(self, in_nc, spatial = True):
super(ProcessBlock,self).__init__()
self.spatial = spatial
self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
self.frequency_process = FreBlock(in_nc)
self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)
def forward(self, x):
xori = x
x_freq = self.frequency_process(x)
x_spatial = self.spatial_process(x)
xcat = torch.cat([x_spatial,x_freq],1)
x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)
return x_out+xori
class SFNet(nn.Module):
def __init__(self, nc,n=5):
super(SFNet,self).__init__()
self.list_block = list()
for index in range(n):
self.list_block.append(ProcessBlock(nc,spatial=False))
self.block = nn.Sequential(*self.list_block)
def forward(self, x):
x_ori = x
x_out = self.block(x_ori)
xout = x_ori + x_out
return xout
class AmplitudeNet_skip(nn.Module):
def __init__(self, nc,n=1):
super(AmplitudeNet_skip,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, nc, 1, 1, 0),
ProcessBlock(nc),
)
self.conv2 = ProcessBlock(nc)
self.conv3 = ProcessBlock(nc)
self.conv4 = nn.Sequential(
ProcessBlock(nc * 2),
nn.Conv2d(nc * 2, nc, 1, 1, 0),
)
self.conv5 = nn.Sequential(
ProcessBlock(nc * 2),
nn.Conv2d(nc * 2, nc, 1, 1, 0),
)
self.convout = nn.Sequential(
ProcessBlock(nc * 2),
nn.Conv2d(nc * 2, 3, 1, 1, 0),
)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(x2)
x4 = self.conv5(torch.cat((x2, x3), dim=1))
xout = self.convout(torch.cat((x1, x4), dim=1))
return xout