FLOL / archs /model.py
danifei's picture
Update archs/model.py
25db441 verified
raw
history blame
7.11 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
# import arch_util as arch_util
# from NAFBlock import *
import kornia
import torch.nn.functional as F
import torchvision.models
try:
import archs.arch_util as arch_util
from archs.NAFBlock import *
except:
import arch_util as arch_util
from NAFBlock import *
class VGG19(torch.nn.Module):
def __init__(self, requires_grad=False):
super().__init__()
vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGGLoss(nn.Module):
def __init__(self):
super(VGGLoss, self).__init__()
self.vgg = VGG19().cuda()
# self.criterion = nn.L1Loss()
self.criterion = nn.L1Loss(reduction='sum')
self.criterion2 = nn.L1Loss()
self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
# print(x_vgg.shape, x_vgg.dtype, torch.max(x_vgg), torch.min(x_vgg), y_vgg.shape, y_vgg.dtype, torch.max(y_vgg), torch.min(y_vgg))
loss = 0
for i in range(len(x_vgg)):
# print(x_vgg[i].shape, y_vgg[i].shape, 'hey')
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
# print(loss, i, 'hey')
return loss
class FourNet(nn.Module):
def __init__(self, nf=64):
super(FourNet, self).__init__()
# AMPLITUDE ENHANCEMENT
self.AmpNet = nn.Sequential(
AmplitudeNet_skip(8),
nn.Sigmoid()
)
self.nf = nf
ResidualBlock_noBN_f = functools.partial(arch_util.ResidualBlock_noBN, nf=nf)
self.conv_first_1 = nn.Conv2d(3 * 2, nf, 3, 1, 1, bias=True)
self.conv_first_2 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True)
self.conv_first_3 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True)
self.feature_extraction = arch_util.make_layer(ResidualBlock_noBN_f, 1)
self.recon_trunk = arch_util.make_layer(ResidualBlock_noBN_f, 1)
self.upconv1 = nn.Conv2d(nf*2, nf * 4, 3, 1, 1, bias=True)
self.upconv2 = nn.Conv2d(nf*2, nf * 4, 3, 1, 1, bias=True)
self.pixel_shuffle = nn.PixelShuffle(2)
self.HRconv = nn.Conv2d(nf*2, nf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(nf, 3, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.transformer = SFNet(nf, n = 4)
self.recon_trunk_light = arch_util.make_layer(ResidualBlock_noBN_f, 6)
def get_mask(self,dark): # SNR map
light = kornia.filters.gaussian_blur2d(dark, (5, 5), (1.5, 1.5))
dark = dark[:, 0:1, :, :] * 0.299 + dark[:, 1:2, :, :] * 0.587 + dark[:, 2:3, :, :] * 0.114
light = light[:, 0:1, :, :] * 0.299 + light[:, 1:2, :, :] * 0.587 + light[:, 2:3, :, :] * 0.114
noise = torch.abs(dark - light)
mask = torch.div(light, noise + 0.0001)
batch_size = mask.shape[0]
height = mask.shape[2]
width = mask.shape[3]
mask_max = torch.max(mask.view(batch_size, -1), dim=1)[0]
mask_max = mask_max.view(batch_size, 1, 1, 1)
mask_max = mask_max.repeat(1, 1, height, width)
mask = mask * 1.0 / (mask_max + 0.0001)
mask = torch.clamp(mask, min=0, max=1.0)
return mask.float()
def forward(self, x):
# AMPLITUDE ENHANCEMENT
#--------------------------------------------------------Frequency Stage---------------------------------------------------
_, _, H, W = x.shape
image_fft = torch.fft.fft2(x, norm='backward')
mag_image = torch.abs(image_fft)
pha_image = torch.angle(image_fft)
curve_amps = self.AmpNet(x)
mag_image = mag_image / (curve_amps + 0.00000001) # * d4
real_image_enhanced = mag_image * torch.cos(pha_image)
imag_image_enhanced = mag_image * torch.sin(pha_image)
img_amp_enhanced = torch.fft.ifft2(torch.complex(real_image_enhanced, imag_image_enhanced), s=(H, W),
norm='backward').real
x_center = img_amp_enhanced
rate = 2 ** 3
pad_h = (rate - H % rate) % rate
pad_w = (rate - W % rate) % rate
if pad_h != 0 or pad_w != 0:
x_center = F.pad(x_center, (0, pad_w, 0, pad_h), "reflect")
x = F.pad(x, (0, pad_w, 0, pad_h), "reflect")
#------------------------------------------Spatial Stage---------------------------------------------------------------------
L1_fea_1 = self.lrelu(self.conv_first_1(torch.cat((x_center,x),dim=1)))
L1_fea_2 = self.lrelu(self.conv_first_2(L1_fea_1)) # Encoder
L1_fea_3 = self.lrelu(self.conv_first_3(L1_fea_2))
fea = self.feature_extraction(L1_fea_3)
fea_light = self.recon_trunk_light(fea)
h_feature = fea.shape[2]
w_feature = fea.shape[3]
mask_image = self.get_mask(x_center) # SNR Map
mask = F.interpolate(mask_image, size=[h_feature, w_feature], mode='nearest') # Resize and Normalize SNR map
fea_unfold = self.transformer(fea)
channel = fea.shape[1]
mask = mask.repeat(1, channel, 1, 1)
fea = fea_unfold * (1 - mask) + fea_light * mask # SNR-based Interaction
out_noise = self.recon_trunk(fea)
out_noise = torch.cat([out_noise, L1_fea_3], dim=1)
out_noise = self.lrelu(self.pixel_shuffle(self.upconv1(out_noise)))
out_noise = torch.cat([out_noise, L1_fea_2], dim=1) # Decoder
out_noise = self.lrelu(self.pixel_shuffle(self.upconv2(out_noise)))
out_noise = torch.cat([out_noise, L1_fea_1], dim=1)
out_noise = self.lrelu(self.HRconv(out_noise))
out_noise = self.conv_last(out_noise)
out_noise = out_noise + x
out_noise = out_noise[:, :, :H, :W]
return out_noise, mag_image, x_center, mask_image