|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import functools |
|
import kornia |
|
|
|
from utils.utils import * |
|
|
|
|
|
class FLOL(nn.Module): |
|
def __init__(self, nf=64): |
|
super(FLOL, self).__init__() |
|
|
|
|
|
self.AmpNet = nn.Sequential( |
|
AmplitudeNet_skip(8), |
|
nn.Sigmoid() |
|
) |
|
|
|
self.nf = nf |
|
ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf=nf) |
|
|
|
self.conv_first_1 = nn.Conv2d(3 * 2, nf, 3, 1, 1, bias=True) |
|
self.conv_first_2 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True) |
|
self.conv_first_3 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True) |
|
|
|
self.feature_extraction = make_layer(ResidualBlock_noBN_f, 1) |
|
self.recon_trunk = make_layer(ResidualBlock_noBN_f, 1) |
|
|
|
self.upconv1 = nn.Conv2d(nf*2, nf * 4, 3, 1, 1, bias=True) |
|
self.upconv2 = nn.Conv2d(nf*2, nf * 4, 3, 1, 1, bias=True) |
|
self.pixel_shuffle = nn.PixelShuffle(2) |
|
self.HRconv = nn.Conv2d(nf*2, nf, 3, 1, 1, bias=True) |
|
self.conv_last = nn.Conv2d(nf, 3, 3, 1, 1, bias=True) |
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
self.transformer = SFNet(nf, n = 4) |
|
self.recon_trunk_light = make_layer(ResidualBlock_noBN_f, 6) |
|
|
|
def get_mask(self,dark): |
|
|
|
light = kornia.filters.gaussian_blur2d(dark, (5, 5), (1.5, 1.5)) |
|
dark = dark[:, 0:1, :, :] * 0.299 + dark[:, 1:2, :, :] * 0.587 + dark[:, 2:3, :, :] * 0.114 |
|
light = light[:, 0:1, :, :] * 0.299 + light[:, 1:2, :, :] * 0.587 + light[:, 2:3, :, :] * 0.114 |
|
noise = torch.abs(dark - light) |
|
|
|
mask = torch.div(light, noise + 0.0001) |
|
|
|
batch_size = mask.shape[0] |
|
height = mask.shape[2] |
|
width = mask.shape[3] |
|
mask_max = torch.max(mask.view(batch_size, -1), dim=1)[0] |
|
mask_max = mask_max.view(batch_size, 1, 1, 1) |
|
mask_max = mask_max.repeat(1, 1, height, width) |
|
mask = mask * 1.0 / (mask_max + 0.0001) |
|
|
|
mask = torch.clamp(mask, min=0, max=1.0) |
|
return mask.float() |
|
|
|
def forward(self, x, side=False): |
|
|
|
|
|
|
|
_, _, H, W = x.shape |
|
image_fft = torch.fft.fft2(x, norm='backward') |
|
mag_image = torch.abs(image_fft) |
|
pha_image = torch.angle(image_fft) |
|
|
|
curve_amps = self.AmpNet(x) |
|
|
|
mag_image = mag_image / (curve_amps + 0.00000001) |
|
real_image_enhanced = mag_image * torch.cos(pha_image) |
|
imag_image_enhanced = mag_image * torch.sin(pha_image) |
|
img_amp_enhanced = torch.fft.ifft2(torch.complex(real_image_enhanced, imag_image_enhanced), s=(H, W), |
|
norm='backward').real |
|
|
|
x_center = img_amp_enhanced |
|
|
|
rate = 2 ** 3 |
|
pad_h = (rate - H % rate) % rate |
|
pad_w = (rate - W % rate) % rate |
|
if pad_h != 0 or pad_w != 0: |
|
x_center = F.pad(x_center, (0, pad_w, 0, pad_h), "reflect") |
|
x = F.pad(x, (0, pad_w, 0, pad_h), "reflect") |
|
|
|
|
|
|
|
L1_fea_1 = self.lrelu(self.conv_first_1(torch.cat((x_center,x),dim=1))) |
|
L1_fea_2 = self.lrelu(self.conv_first_2(L1_fea_1)) |
|
L1_fea_3 = self.lrelu(self.conv_first_3(L1_fea_2)) |
|
|
|
fea = self.feature_extraction(L1_fea_3) |
|
fea_light = self.recon_trunk_light(fea) |
|
|
|
h_feature = fea.shape[2] |
|
w_feature = fea.shape[3] |
|
mask_image = self.get_mask(x_center) |
|
mask = F.interpolate(mask_image, size=[h_feature, w_feature], mode='nearest') |
|
|
|
fea_unfold = self.transformer(fea) |
|
|
|
channel = fea.shape[1] |
|
mask = mask.repeat(1, channel, 1, 1) |
|
fea = fea_unfold * (1 - mask) + fea_light * mask |
|
|
|
out_noise = self.recon_trunk(fea) |
|
out_noise = torch.cat([out_noise, L1_fea_3], dim=1) |
|
out_noise = self.lrelu(self.pixel_shuffle(self.upconv1(out_noise))) |
|
out_noise = torch.cat([out_noise, L1_fea_2], dim=1) |
|
out_noise = self.lrelu(self.pixel_shuffle(self.upconv2(out_noise))) |
|
out_noise = torch.cat([out_noise, L1_fea_1], dim=1) |
|
out_noise = self.lrelu(self.HRconv(out_noise)) |
|
out_noise = self.conv_last(out_noise) |
|
out_noise = out_noise + x |
|
out_noise = out_noise[:, :, :H, :W] |
|
|
|
if side: |
|
return out_noise, x_center |
|
else: |
|
return out_noise |
|
|
|
|
|
|
|
|
|
def create_model(): |
|
|
|
net = FLOL(nf=16) |
|
return net |