import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) def make_layer(block, n_layers): layers = [] for _ in range(n_layers): layers.append(block()) return nn.Sequential(*layers) class ResidualBlock_noBN(nn.Module): '''Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| ''' def __init__(self, nf=64): super(ResidualBlock_noBN, self).__init__() self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) # initialization initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = F.relu(self.conv1(x), inplace=True) out = self.conv2(out) return identity + out class ResidualBlock(nn.Module): '''Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| ''' def __init__(self, nf=64): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.bn = nn.BatchNorm2d(nf) self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) # initialization initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = F.relu(self.bn(self.conv1(x)), inplace=True) out = self.conv2(out) return identity + out class LayerNormFunction(torch.autograd.Function): @staticmethod def forward(ctx, x, weight, bias, eps): ctx.eps = eps N, C, H, W = x.size() mu = x.mean(1, keepdim=True) var = (x - mu).pow(2).mean(1, keepdim=True) y = (x - mu) / (var + eps).sqrt() ctx.save_for_backward(y, var, weight) y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) return y @staticmethod def backward(ctx, grad_output): eps = ctx.eps N, C, H, W = grad_output.size() y, var, weight = ctx.saved_variables g = grad_output * weight.view(1, C, 1, 1) mean_g = g.mean(dim=1, keepdim=True) mean_gy = (g * y).mean(dim=1, keepdim=True) gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( dim=0), None class LayerNorm2d(nn.Module): def __init__(self, channels, eps=1e-6): super(LayerNorm2d, self).__init__() self.register_parameter('weight', nn.Parameter(torch.ones(channels))) self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) self.eps = eps def forward(self, x): return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)