Cld commited on
Commit
9f63569
1 Parent(s): 3d1c620
Files changed (2) hide show
  1. app.py +58 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
5
+
6
+ model_id = 'ClaudianoLeonardo/bert-finetuned_news_classifier-portuguese'
7
+ tokenizer_classifier = AutoTokenizer.from_pretrained(model_id)
8
+ model_classifier = AutoModelForSequenceClassification.from_pretrained(model_id)
9
+
10
+ model_id2 = "ClaudianoLeonardo/whisper-finetuned-tiny-ptv2"
11
+
12
+ # Carregar modelos do Hugging Face
13
+ whisper_model = pipeline('automatic-speech-recognition', model = model_id2)
14
+
15
+ text_classification_model = AutoModelForSequenceClassification.from_pretrained(model_id)
16
+ text_classification_tokenizer = AutoTokenizer.from_pretrained(model_id)
17
+
18
+ id2label = {0:'economia', 1:'esportes', 2:'famosos', 3:'politica', 4:'tecnologia'}
19
+
20
+ def get_text(logits):
21
+ sigmoid = torch.nn.Sigmoid()
22
+ probs = sigmoid(logits.squeeze().cpu())
23
+ predictions = np.zeros(probs.shape)
24
+ predictions[np.where(probs >= 0.5)] = 1
25
+ predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
26
+ return predicted_labels[0]
27
+
28
+ # Função para realizar a inferência
29
+ def inference(audio):
30
+ # Realizar inferência no modelo Whisper para reconhecimento de fala
31
+ # Obter texto da saída do modelo Whisper
32
+ try:
33
+ sr, y = audio
34
+ except:
35
+ return "Erro ao carregar o áudio ou insira um áudio válido"
36
+
37
+ y = y.astype(np.float32)
38
+ y /= np.max(np.abs(y))
39
+ transcribed_text = whisper_model({"sampling_rate": sr, "raw": y})["text"]
40
+
41
+ # Realizar inferência no modelo de classificação de texto
42
+ text_input = text_classification_tokenizer(transcribed_text, return_tensors="pt", padding=True)
43
+ text_output = text_classification_model(**text_input)
44
+ # Obter a classe predita
45
+ predicted_class = get_text(text_output["logits"])
46
+
47
+ return f"Texto transcrito: {transcribed_text}\nClasse predita: {predicted_class}"
48
+
49
+ # Criar interface gráfica com Gradio
50
+ iface = gr.Interface(
51
+ fn=inference,
52
+ inputs=gr.Audio(),
53
+ outputs="text",
54
+ live=True
55
+ )
56
+
57
+ # Executar a interface
58
+ iface.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ transformers
2
+ torchaudio
3
+ gradio
4
+ torch