Create trainer_tf.py
Browse files- trainer_tf.py +801 -0
trainer_tf.py
ADDED
@@ -0,0 +1,801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Tensorflow trainer class."""
|
15 |
+
|
16 |
+
import datetime
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
import warnings
|
20 |
+
from typing import Callable, Dict, Optional, Tuple
|
21 |
+
|
22 |
+
from .utils import ENV_VARS_TRUE_VALUES
|
23 |
+
|
24 |
+
|
25 |
+
# Integrations must be imported before ML frameworks:
|
26 |
+
# isort: off
|
27 |
+
from .integrations import (
|
28 |
+
is_comet_available,
|
29 |
+
is_wandb_available,
|
30 |
+
)
|
31 |
+
|
32 |
+
# isort: on
|
33 |
+
|
34 |
+
import numpy as np
|
35 |
+
import tensorflow as tf
|
36 |
+
from tensorflow.python.distribute.values import PerReplica
|
37 |
+
|
38 |
+
from .modeling_tf_utils import TFPreTrainedModel
|
39 |
+
from .optimization_tf import GradientAccumulator, create_optimizer
|
40 |
+
from .trainer_utils import (
|
41 |
+
PREFIX_CHECKPOINT_DIR,
|
42 |
+
EvalPrediction,
|
43 |
+
IntervalStrategy,
|
44 |
+
PredictionOutput,
|
45 |
+
enable_full_determinism,
|
46 |
+
set_seed,
|
47 |
+
)
|
48 |
+
from .training_args_tf import TFTrainingArguments
|
49 |
+
from .utils import logging
|
50 |
+
|
51 |
+
|
52 |
+
if is_wandb_available():
|
53 |
+
import wandb
|
54 |
+
|
55 |
+
if is_comet_available():
|
56 |
+
import comet_ml
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
class TFTrainer:
|
62 |
+
"""
|
63 |
+
TFTrainer is a simple but feature-complete training and eval loop for TensorFlow, optimized for 🤗 Transformers.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
model ([`TFPreTrainedModel`]):
|
67 |
+
The model to train, evaluate or use for predictions.
|
68 |
+
args ([`TFTrainingArguments`]):
|
69 |
+
The arguments to tweak training.
|
70 |
+
train_dataset ([`~tf.data.Dataset`], *optional*):
|
71 |
+
The dataset to use for training. The dataset should yield tuples of `(features, labels)` where `features`
|
72 |
+
is a dict of input features and `labels` is the labels. If `labels` is a tensor, the loss is calculated by
|
73 |
+
the model by calling `model(features, labels=labels)`. If `labels` is a dict, such as when using a
|
74 |
+
QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
|
75 |
+
`model(features, **labels)`.
|
76 |
+
eval_dataset ([`~tf.data.Dataset`], *optional*):
|
77 |
+
The dataset to use for evaluation. The dataset should yield tuples of `(features, labels)` where `features`
|
78 |
+
is a dict of input features and `labels` is the labels. If `labels` is a tensor, the loss is calculated by
|
79 |
+
the model by calling `model(features, labels=labels)`. If `labels` is a dict, such as when using a
|
80 |
+
QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
|
81 |
+
`model(features, **labels)`.
|
82 |
+
compute_metrics (`Callable[[EvalPrediction], Dict]`, *optional*):
|
83 |
+
The function that will be used to compute metrics at evaluation. Must take a [`EvalPrediction`] and return
|
84 |
+
a dictionary string to metric values.
|
85 |
+
tb_writer (`tf.summary.SummaryWriter`, *optional*):
|
86 |
+
Object to write to TensorBoard.
|
87 |
+
optimizers (`Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule]`, *optional*):
|
88 |
+
A tuple containing the optimizer and the scheduler to use. The optimizer default to an instance of
|
89 |
+
[`tf.keras.optimizers.Adam`] if `args.weight_decay_rate` is 0 else an instance of [`AdamWeightDecay`]. The
|
90 |
+
scheduler will default to an instance of [`tf.keras.optimizers.schedules.PolynomialDecay`] if
|
91 |
+
`args.num_warmup_steps` is 0 else an instance of [`WarmUp`].
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
model: TFPreTrainedModel,
|
97 |
+
args: TFTrainingArguments,
|
98 |
+
train_dataset: Optional[tf.data.Dataset] = None,
|
99 |
+
eval_dataset: Optional[tf.data.Dataset] = None,
|
100 |
+
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
|
101 |
+
tb_writer: Optional[tf.summary.SummaryWriter] = None,
|
102 |
+
optimizers: Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule] = (
|
103 |
+
None,
|
104 |
+
None,
|
105 |
+
),
|
106 |
+
):
|
107 |
+
self.model = model
|
108 |
+
self.args = args
|
109 |
+
self.train_dataset = train_dataset
|
110 |
+
self.eval_dataset = eval_dataset
|
111 |
+
self.compute_metrics = compute_metrics
|
112 |
+
self.optimizer, self.lr_scheduler = optimizers
|
113 |
+
self.gradient_accumulator = GradientAccumulator()
|
114 |
+
self.global_step = 0
|
115 |
+
self.epoch_logging = 0
|
116 |
+
self.eval_loss = tf.keras.metrics.Sum()
|
117 |
+
|
118 |
+
warnings.warn(
|
119 |
+
"The class `TFTrainer` is deprecated and will be removed in version 5 of Transformers. "
|
120 |
+
"We recommend using native Keras instead, by calling methods like `fit()` and `predict()` "
|
121 |
+
"directly on the model object. Detailed examples of the Keras style can be found in our "
|
122 |
+
"examples at https://github.com/huggingface/transformers/tree/main/examples/tensorflow",
|
123 |
+
FutureWarning,
|
124 |
+
)
|
125 |
+
|
126 |
+
if tb_writer is not None:
|
127 |
+
self.tb_writer = tb_writer
|
128 |
+
else:
|
129 |
+
self.tb_writer = tf.summary.create_file_writer(self.args.logging_dir)
|
130 |
+
|
131 |
+
if is_wandb_available():
|
132 |
+
self.setup_wandb()
|
133 |
+
elif os.getenv("WANDB_DISABLED", "").upper() not in ENV_VARS_TRUE_VALUES:
|
134 |
+
logger.info(
|
135 |
+
"You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
|
136 |
+
"run `pip install wandb && wandb login` see https://docs.wandb.com/huggingface."
|
137 |
+
)
|
138 |
+
|
139 |
+
if is_comet_available():
|
140 |
+
self.setup_comet()
|
141 |
+
elif os.environ.get("COMET_MODE") != "DISABLED":
|
142 |
+
logger.info(
|
143 |
+
"To use comet_ml logging, run `pip/conda install comet_ml` "
|
144 |
+
"see https://www.comet.ml/docs/python-sdk/huggingface/"
|
145 |
+
)
|
146 |
+
|
147 |
+
enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
|
148 |
+
|
149 |
+
def get_train_tfdataset(self) -> tf.data.Dataset:
|
150 |
+
"""
|
151 |
+
Returns the training [`~tf.data.Dataset`].
|
152 |
+
|
153 |
+
Subclass and override this method if you want to inject some custom behavior.
|
154 |
+
"""
|
155 |
+
if self.train_dataset is None:
|
156 |
+
raise ValueError("Trainer: training requires a train_dataset.")
|
157 |
+
|
158 |
+
self.total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps
|
159 |
+
self.num_train_examples = self.train_dataset.cardinality().numpy()
|
160 |
+
|
161 |
+
if self.num_train_examples < 0:
|
162 |
+
raise ValueError("The training dataset must have an asserted cardinality")
|
163 |
+
|
164 |
+
ds = (
|
165 |
+
self.train_dataset.repeat()
|
166 |
+
.shuffle(self.num_train_examples, seed=self.args.seed)
|
167 |
+
.batch(self.total_train_batch_size, drop_remainder=self.args.dataloader_drop_last)
|
168 |
+
.prefetch(tf.data.experimental.AUTOTUNE)
|
169 |
+
)
|
170 |
+
|
171 |
+
return self.args.strategy.experimental_distribute_dataset(ds)
|
172 |
+
|
173 |
+
def get_eval_tfdataset(self, eval_dataset: Optional[tf.data.Dataset] = None) -> tf.data.Dataset:
|
174 |
+
"""
|
175 |
+
Returns the evaluation [`~tf.data.Dataset`].
|
176 |
+
|
177 |
+
Args:
|
178 |
+
eval_dataset ([`~tf.data.Dataset`], *optional*):
|
179 |
+
If provided, will override *self.eval_dataset*. The dataset should yield tuples of `(features, labels)`
|
180 |
+
where `features` is a dict of input features and `labels` is the labels. If `labels` is a tensor, the
|
181 |
+
loss is calculated by the model by calling `model(features, labels=labels)`. If `labels` is a dict,
|
182 |
+
such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated
|
183 |
+
by calling `model(features, **labels)`.
|
184 |
+
|
185 |
+
Subclass and override this method if you want to inject some custom behavior.
|
186 |
+
"""
|
187 |
+
if eval_dataset is None and self.eval_dataset is None:
|
188 |
+
raise ValueError("Trainer: evaluation requires an eval_dataset.")
|
189 |
+
|
190 |
+
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
|
191 |
+
num_examples = eval_dataset.cardinality().numpy()
|
192 |
+
|
193 |
+
if num_examples < 0:
|
194 |
+
raise ValueError("The training dataset must have an asserted cardinality")
|
195 |
+
|
196 |
+
approx = math.floor if self.args.dataloader_drop_last else math.ceil
|
197 |
+
steps = approx(num_examples / self.args.eval_batch_size)
|
198 |
+
ds = (
|
199 |
+
eval_dataset.repeat()
|
200 |
+
.batch(self.args.eval_batch_size, drop_remainder=self.args.dataloader_drop_last)
|
201 |
+
.prefetch(tf.data.experimental.AUTOTUNE)
|
202 |
+
)
|
203 |
+
|
204 |
+
return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples
|
205 |
+
|
206 |
+
def get_test_tfdataset(self, test_dataset: tf.data.Dataset) -> tf.data.Dataset:
|
207 |
+
"""
|
208 |
+
Returns a test [`~tf.data.Dataset`].
|
209 |
+
|
210 |
+
Args:
|
211 |
+
test_dataset ([`~tf.data.Dataset`]):
|
212 |
+
The dataset to use. The dataset should yield tuples of `(features, labels)` where `features` is a dict
|
213 |
+
of input features and `labels` is the labels. If `labels` is a tensor, the loss is calculated by the
|
214 |
+
model by calling `model(features, labels=labels)`. If `labels` is a dict, such as when using a
|
215 |
+
QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
|
216 |
+
`model(features, **labels)`.
|
217 |
+
|
218 |
+
Subclass and override this method if you want to inject some custom behavior.
|
219 |
+
"""
|
220 |
+
|
221 |
+
num_examples = test_dataset.cardinality().numpy()
|
222 |
+
|
223 |
+
if num_examples < 0:
|
224 |
+
raise ValueError("The training dataset must have an asserted cardinality")
|
225 |
+
|
226 |
+
steps = math.ceil(num_examples / self.args.eval_batch_size)
|
227 |
+
ds = test_dataset.batch(self.args.eval_batch_size).prefetch(tf.data.experimental.AUTOTUNE)
|
228 |
+
|
229 |
+
return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples
|
230 |
+
|
231 |
+
def create_optimizer_and_scheduler(self, num_training_steps: int):
|
232 |
+
"""
|
233 |
+
Setup the optimizer and the learning rate scheduler.
|
234 |
+
|
235 |
+
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
|
236 |
+
TFTrainer's init through `optimizers`, or subclass and override this method.
|
237 |
+
"""
|
238 |
+
if not self.optimizer and not self.lr_scheduler:
|
239 |
+
warmup_steps = (
|
240 |
+
self.args.warmup_steps
|
241 |
+
if self.args.warmup_steps > 0
|
242 |
+
else math.ceil(num_training_steps * self.args.warmup_ratio)
|
243 |
+
)
|
244 |
+
|
245 |
+
self.optimizer, self.lr_scheduler = create_optimizer(
|
246 |
+
self.args.learning_rate,
|
247 |
+
num_training_steps,
|
248 |
+
warmup_steps,
|
249 |
+
adam_beta1=self.args.adam_beta1,
|
250 |
+
adam_beta2=self.args.adam_beta2,
|
251 |
+
adam_epsilon=self.args.adam_epsilon,
|
252 |
+
weight_decay_rate=self.args.weight_decay,
|
253 |
+
power=self.args.poly_power,
|
254 |
+
)
|
255 |
+
|
256 |
+
def setup_wandb(self):
|
257 |
+
"""
|
258 |
+
Setup the optional Weights & Biases (`wandb`) integration.
|
259 |
+
|
260 |
+
One can subclass and override this method to customize the setup if needed. Find more information `here
|
261 |
+
<https://docs.wandb.com/huggingface>`__. You can also override the following environment variables:
|
262 |
+
|
263 |
+
Environment:
|
264 |
+
WANDB_PROJECT:
|
265 |
+
(Optional): str - "huggingface" by default, set this to a custom string to store results in a different
|
266 |
+
project.
|
267 |
+
WANDB_DISABLED:
|
268 |
+
(Optional): boolean - defaults to false, set to "true" to disable wandb entirely.
|
269 |
+
"""
|
270 |
+
|
271 |
+
logger.info('Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"')
|
272 |
+
combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()}
|
273 |
+
wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name)
|
274 |
+
|
275 |
+
def setup_comet(self):
|
276 |
+
"""
|
277 |
+
Setup the optional Comet.ml integration.
|
278 |
+
|
279 |
+
Environment:
|
280 |
+
COMET_MODE:
|
281 |
+
(Optional): str - "OFFLINE", "ONLINE", or "DISABLED"
|
282 |
+
COMET_PROJECT_NAME:
|
283 |
+
(Optional): str - Comet.ml project name for experiments
|
284 |
+
COMET_OFFLINE_DIRECTORY:
|
285 |
+
(Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"
|
286 |
+
|
287 |
+
For a number of configurable items in the environment, see `here
|
288 |
+
<https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__
|
289 |
+
"""
|
290 |
+
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
|
291 |
+
args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
|
292 |
+
experiment = None
|
293 |
+
if comet_mode == "ONLINE":
|
294 |
+
experiment = comet_ml.Experiment(**args)
|
295 |
+
logger.info("Automatic Comet.ml online logging enabled")
|
296 |
+
elif comet_mode == "OFFLINE":
|
297 |
+
args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
|
298 |
+
experiment = comet_ml.OfflineExperiment(**args)
|
299 |
+
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
|
300 |
+
if experiment is not None:
|
301 |
+
experiment._set_model_graph(self.model, framework="transformers")
|
302 |
+
experiment._log_parameters(self.args, prefix="args/", framework="transformers")
|
303 |
+
experiment._log_parameters(self.model.config, prefix="config/", framework="transformers")
|
304 |
+
|
305 |
+
def prediction_loop(
|
306 |
+
self,
|
307 |
+
dataset: tf.data.Dataset,
|
308 |
+
steps: int,
|
309 |
+
num_examples: int,
|
310 |
+
description: str,
|
311 |
+
prediction_loss_only: Optional[bool] = None,
|
312 |
+
) -> PredictionOutput:
|
313 |
+
"""
|
314 |
+
Prediction/evaluation loop, shared by [`~TFTrainer.evaluate`] and [`~TFTrainer.predict`].
|
315 |
+
|
316 |
+
Works both with or without labels.
|
317 |
+
"""
|
318 |
+
|
319 |
+
prediction_loss_only = (
|
320 |
+
prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
|
321 |
+
)
|
322 |
+
|
323 |
+
logger.info(f"***** Running {description} *****")
|
324 |
+
logger.info(f" Num examples in dataset = {num_examples}")
|
325 |
+
if description == "Evaluation":
|
326 |
+
logger.info(f" Num examples in used in evaluation = {self.args.eval_batch_size * steps}")
|
327 |
+
logger.info(f" Batch size = {self.args.eval_batch_size}")
|
328 |
+
|
329 |
+
label_ids: np.ndarray = None
|
330 |
+
preds: np.ndarray = None
|
331 |
+
self.eval_loss.reset_states()
|
332 |
+
|
333 |
+
# Reset the past mems state at the beginning of the evaluation if necessary.
|
334 |
+
if self.args.past_index >= 0:
|
335 |
+
self._past = None
|
336 |
+
|
337 |
+
for step, batch in enumerate(dataset):
|
338 |
+
logits = self.distributed_prediction_steps(batch)
|
339 |
+
_, labels = batch
|
340 |
+
|
341 |
+
if not prediction_loss_only:
|
342 |
+
if isinstance(logits, tuple):
|
343 |
+
logits = logits[0]
|
344 |
+
|
345 |
+
if isinstance(labels, tuple):
|
346 |
+
labels = labels[0]
|
347 |
+
|
348 |
+
if self.args.n_replicas > 1:
|
349 |
+
for val in logits.values:
|
350 |
+
if preds is None:
|
351 |
+
preds = val.numpy()
|
352 |
+
else:
|
353 |
+
preds = np.append(preds, val.numpy(), axis=0)
|
354 |
+
|
355 |
+
for val in labels.values:
|
356 |
+
if label_ids is None:
|
357 |
+
label_ids = val.numpy()
|
358 |
+
else:
|
359 |
+
label_ids = np.append(label_ids, val.numpy(), axis=0)
|
360 |
+
else:
|
361 |
+
if preds is None:
|
362 |
+
preds = logits.numpy()
|
363 |
+
else:
|
364 |
+
preds = np.append(preds, logits.numpy(), axis=0)
|
365 |
+
|
366 |
+
if label_ids is None:
|
367 |
+
label_ids = labels.numpy()
|
368 |
+
else:
|
369 |
+
label_ids = np.append(label_ids, labels.numpy(), axis=0)
|
370 |
+
|
371 |
+
if step == steps - 1:
|
372 |
+
break
|
373 |
+
|
374 |
+
if self.compute_metrics is not None and preds is not None and label_ids is not None:
|
375 |
+
metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
|
376 |
+
else:
|
377 |
+
metrics = {}
|
378 |
+
|
379 |
+
metrics["eval_loss"] = self.eval_loss.result().numpy() / steps
|
380 |
+
|
381 |
+
for key in list(metrics.keys()):
|
382 |
+
if not key.startswith("eval_"):
|
383 |
+
metrics[f"eval_{key}"] = metrics.pop(key)
|
384 |
+
|
385 |
+
if self.args.past_index and hasattr(self, "_past"):
|
386 |
+
# Clean the state at the end of training
|
387 |
+
delattr(self, "_past")
|
388 |
+
|
389 |
+
return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
|
390 |
+
|
391 |
+
def log(self, logs: Dict[str, float]) -> None:
|
392 |
+
"""
|
393 |
+
Log `logs` on the various objects watching training.
|
394 |
+
|
395 |
+
Subclass and override this method to inject custom behavior.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
logs (`Dict[str, float]`):
|
399 |
+
The values to log.
|
400 |
+
"""
|
401 |
+
logs["epoch"] = self.epoch_logging
|
402 |
+
|
403 |
+
if self.tb_writer:
|
404 |
+
with self.tb_writer.as_default():
|
405 |
+
for k, v in logs.items():
|
406 |
+
tf.summary.scalar(k, v, step=self.global_step)
|
407 |
+
self.tb_writer.flush()
|
408 |
+
|
409 |
+
if is_wandb_available():
|
410 |
+
wandb.log(logs, step=self.global_step)
|
411 |
+
|
412 |
+
if is_comet_available():
|
413 |
+
experiment = comet_ml.config.get_global_experiment()
|
414 |
+
if experiment is not None:
|
415 |
+
experiment._log_metrics(
|
416 |
+
logs, step=self.global_step, epoch=self.epoch_logging, framework="transformers"
|
417 |
+
)
|
418 |
+
|
419 |
+
output = {**logs, **{"step": self.global_step}}
|
420 |
+
|
421 |
+
logger.info(output)
|
422 |
+
|
423 |
+
def evaluate(self, eval_dataset: Optional[tf.data.Dataset] = None) -> Dict[str, float]:
|
424 |
+
"""
|
425 |
+
Run evaluation and returns metrics.
|
426 |
+
|
427 |
+
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
|
428 |
+
(pass it to the init `compute_metrics` argument).
|
429 |
+
|
430 |
+
Args:
|
431 |
+
eval_dataset ([`~tf.data.Dataset`], *optional*):
|
432 |
+
Pass a dataset if you wish to override `self.eval_dataset`. The dataset should yield tuples of
|
433 |
+
`(features, labels)` where `features` is a dict of input features and `labels` is the labels. If
|
434 |
+
`labels` is a tensor, the loss is calculated by the model by calling `model(features, labels=labels)`.
|
435 |
+
If `labels` is a dict, such as when using a QuestionAnswering head model with multiple targets, the
|
436 |
+
loss is instead calculated by calling `model(features, **labels)`.
|
437 |
+
|
438 |
+
Returns:
|
439 |
+
A dictionary containing the evaluation loss and the potential metrics computed from the predictions.
|
440 |
+
"""
|
441 |
+
eval_ds, steps, num_examples = self.get_eval_tfdataset(eval_dataset)
|
442 |
+
|
443 |
+
output = self.prediction_loop(eval_ds, steps, num_examples, description="Evaluation")
|
444 |
+
logs = {**output.metrics}
|
445 |
+
logs["epoch"] = self.epoch_logging
|
446 |
+
|
447 |
+
self.log(logs)
|
448 |
+
|
449 |
+
return output.metrics
|
450 |
+
|
451 |
+
def prediction_step(
|
452 |
+
self, features: tf.Tensor, labels: tf.Tensor, nb_instances_in_global_batch: tf.Tensor
|
453 |
+
) -> tf.Tensor:
|
454 |
+
"""
|
455 |
+
Compute the prediction on features and update the loss with labels.
|
456 |
+
|
457 |
+
Subclass and override to inject some custom behavior.
|
458 |
+
"""
|
459 |
+
per_example_loss, logits = self.run_model(features, labels, False)
|
460 |
+
scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype)
|
461 |
+
|
462 |
+
self.eval_loss.update_state(scaled_loss)
|
463 |
+
|
464 |
+
return logits
|
465 |
+
|
466 |
+
@tf.function
|
467 |
+
def distributed_prediction_steps(self, batch):
|
468 |
+
nb_instances_in_batch = self._compute_nb_instances(batch)
|
469 |
+
inputs = self._get_step_inputs(batch, nb_instances_in_batch)
|
470 |
+
|
471 |
+
logits = self.args.strategy.run(self.prediction_step, inputs)
|
472 |
+
|
473 |
+
return logits
|
474 |
+
|
475 |
+
def train(self) -> None:
|
476 |
+
"""
|
477 |
+
Train method to train the model.
|
478 |
+
"""
|
479 |
+
train_ds = self.get_train_tfdataset()
|
480 |
+
|
481 |
+
if self.args.debug:
|
482 |
+
tf.summary.trace_on(graph=True, profiler=True)
|
483 |
+
|
484 |
+
self.gradient_accumulator.reset()
|
485 |
+
|
486 |
+
num_update_steps_per_epoch = self.num_train_examples / self.total_train_batch_size
|
487 |
+
|
488 |
+
# In fact, ``self.args.dataloader_drop_last`` has no effect in `trainer_tf.py`, because
|
489 |
+
# the dataset is repeated before being batched.
|
490 |
+
# It has the effect only when TPU is used which requires explicit tensor shape in order to make
|
491 |
+
# the gradient accumulation implementation work.
|
492 |
+
approx = math.floor if self.args.dataloader_drop_last else math.ceil
|
493 |
+
num_update_steps_per_epoch = approx(num_update_steps_per_epoch)
|
494 |
+
|
495 |
+
# At least one update for each epoch.
|
496 |
+
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
|
497 |
+
self.steps_per_epoch = num_update_steps_per_epoch
|
498 |
+
|
499 |
+
if self.args.max_steps > 0:
|
500 |
+
t_total = self.args.max_steps
|
501 |
+
epochs = (self.args.max_steps // self.steps_per_epoch) + int(
|
502 |
+
self.args.max_steps % self.steps_per_epoch > 0
|
503 |
+
)
|
504 |
+
else:
|
505 |
+
t_total = self.steps_per_epoch * self.args.num_train_epochs
|
506 |
+
epochs = self.args.num_train_epochs
|
507 |
+
|
508 |
+
# Since ``self.args.num_train_epochs`` can be `float`, we make ``epochs`` be a `float` always.
|
509 |
+
epochs = float(epochs)
|
510 |
+
|
511 |
+
with self.args.strategy.scope():
|
512 |
+
self.create_optimizer_and_scheduler(num_training_steps=t_total)
|
513 |
+
folder = os.path.join(self.args.output_dir, PREFIX_CHECKPOINT_DIR)
|
514 |
+
ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model)
|
515 |
+
self.model.ckpt_manager = tf.train.CheckpointManager(ckpt, folder, max_to_keep=self.args.save_total_limit)
|
516 |
+
|
517 |
+
iterations = self.optimizer.iterations
|
518 |
+
epochs_trained = 0
|
519 |
+
steps_trained_in_current_epoch = 0
|
520 |
+
if self.model.ckpt_manager.latest_checkpoint:
|
521 |
+
logger.info(
|
522 |
+
f"Checkpoint file {self.model.ckpt_manager.latest_checkpoint} found and restoring from checkpoint"
|
523 |
+
)
|
524 |
+
ckpt.restore(self.model.ckpt_manager.latest_checkpoint).expect_partial()
|
525 |
+
|
526 |
+
self.global_step = iterations.numpy()
|
527 |
+
|
528 |
+
epochs_trained = self.global_step // self.steps_per_epoch
|
529 |
+
steps_trained_in_current_epoch = self.global_step % self.steps_per_epoch
|
530 |
+
|
531 |
+
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
532 |
+
logger.info(f" Continuing training from epoch {epochs_trained}")
|
533 |
+
logger.info(f" Continuing training from global step {self.global_step}")
|
534 |
+
logger.info(f" Will skip the first {steps_trained_in_current_epoch} steps in the first epoch")
|
535 |
+
|
536 |
+
tf.summary.experimental.set_step(self.global_step)
|
537 |
+
|
538 |
+
with self.tb_writer.as_default():
|
539 |
+
tf.summary.text("args", self.args.to_json_string())
|
540 |
+
|
541 |
+
self.tb_writer.flush()
|
542 |
+
|
543 |
+
logger.info("***** Running training *****")
|
544 |
+
logger.info(f" Num examples = {self.num_train_examples}")
|
545 |
+
# TODO: We might want to print a more precise ``epochs`` if self.args.max_steps > 0 ?
|
546 |
+
logger.info(f" Num Epochs = {epochs}")
|
547 |
+
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
|
548 |
+
logger.info(
|
549 |
+
f" Total train batch size (w. parallel, distributed & accumulation) = {self.total_train_batch_size}"
|
550 |
+
)
|
551 |
+
logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
|
552 |
+
logger.info(f" Steps per epoch = {self.steps_per_epoch}")
|
553 |
+
logger.info(f" Total optimization steps = {t_total}")
|
554 |
+
|
555 |
+
self.train_loss = tf.keras.metrics.Sum()
|
556 |
+
start_time = datetime.datetime.now()
|
557 |
+
|
558 |
+
for epoch_iter in range(epochs_trained, int(epochs)):
|
559 |
+
# Reset the past mems state at the beginning of each epoch if necessary.
|
560 |
+
if self.args.past_index >= 0:
|
561 |
+
self._past = None
|
562 |
+
|
563 |
+
for step, batch in enumerate(train_ds):
|
564 |
+
# Skip past any already trained steps if resuming training
|
565 |
+
if steps_trained_in_current_epoch > 0:
|
566 |
+
steps_trained_in_current_epoch -= 1
|
567 |
+
continue
|
568 |
+
|
569 |
+
self.distributed_training_steps(batch)
|
570 |
+
|
571 |
+
self.global_step = iterations.numpy()
|
572 |
+
self.epoch_logging = epoch_iter + (step + 1) / self.steps_per_epoch
|
573 |
+
|
574 |
+
training_loss = self.train_loss.result() / (step + 1)
|
575 |
+
|
576 |
+
if self.args.debug:
|
577 |
+
logs = {}
|
578 |
+
logs["loss"] = training_loss.numpy()
|
579 |
+
logs["epoch"] = self.epoch_logging
|
580 |
+
|
581 |
+
self.log(logs)
|
582 |
+
|
583 |
+
if self.global_step == 1 and self.args.debug:
|
584 |
+
with self.tb_writer.as_default():
|
585 |
+
tf.summary.trace_export(
|
586 |
+
name="training", step=self.global_step, profiler_outdir=self.args.logging_dir
|
587 |
+
)
|
588 |
+
|
589 |
+
if (
|
590 |
+
self.args.eval_steps > 0
|
591 |
+
and self.args.evaluation_strategy == IntervalStrategy.STEPS
|
592 |
+
and self.global_step % self.args.eval_steps == 0
|
593 |
+
):
|
594 |
+
self.evaluate()
|
595 |
+
|
596 |
+
if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
|
597 |
+
self.global_step == 1 and self.args.logging_first_step
|
598 |
+
):
|
599 |
+
logs = {}
|
600 |
+
logs["loss"] = training_loss.numpy()
|
601 |
+
logs["learning_rate"] = self.lr_scheduler(self.global_step).numpy()
|
602 |
+
logs["epoch"] = self.epoch_logging
|
603 |
+
|
604 |
+
self.log(logs)
|
605 |
+
|
606 |
+
if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
|
607 |
+
ckpt_save_path = self.model.ckpt_manager.save()
|
608 |
+
|
609 |
+
logger.info(f"Saving checkpoint for step {self.global_step} at {ckpt_save_path}")
|
610 |
+
|
611 |
+
if self.args.max_steps > 0 and self.global_step >= t_total:
|
612 |
+
break
|
613 |
+
|
614 |
+
if self.global_step % self.steps_per_epoch == 0:
|
615 |
+
break
|
616 |
+
|
617 |
+
self.train_loss.reset_states()
|
618 |
+
|
619 |
+
if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
|
620 |
+
break
|
621 |
+
|
622 |
+
end_time = datetime.datetime.now()
|
623 |
+
|
624 |
+
logger.info(f"Training took: {str(end_time - start_time)}")
|
625 |
+
|
626 |
+
if self.args.past_index and hasattr(self, "_past"):
|
627 |
+
# Clean the state at the end of training
|
628 |
+
delattr(self, "_past")
|
629 |
+
|
630 |
+
def training_step(self, features, labels, nb_instances_in_global_batch):
|
631 |
+
"""
|
632 |
+
Perform a training step on features and labels.
|
633 |
+
|
634 |
+
Subclass and override to inject some custom behavior.
|
635 |
+
"""
|
636 |
+
per_example_loss, _ = self.run_model(features, labels, True)
|
637 |
+
scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype)
|
638 |
+
gradients = tf.gradients(scaled_loss, self.model.trainable_variables)
|
639 |
+
gradients = [
|
640 |
+
g if g is not None else tf.zeros_like(v) for g, v in zip(gradients, self.model.trainable_variables)
|
641 |
+
]
|
642 |
+
|
643 |
+
if self.args.gradient_accumulation_steps > 1:
|
644 |
+
self.gradient_accumulator(gradients)
|
645 |
+
|
646 |
+
self.train_loss.update_state(scaled_loss)
|
647 |
+
|
648 |
+
if self.args.gradient_accumulation_steps == 1:
|
649 |
+
return gradients
|
650 |
+
|
651 |
+
def apply_gradients(self, features, labels, nb_instances_in_global_batch):
|
652 |
+
if self.args.gradient_accumulation_steps == 1:
|
653 |
+
gradients = self.training_step(features, labels, nb_instances_in_global_batch)
|
654 |
+
|
655 |
+
self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables)))
|
656 |
+
else:
|
657 |
+
for _ in tf.range(self.args.gradient_accumulation_steps):
|
658 |
+
reduced_features = {
|
659 |
+
k: ft[: self.args.train_batch_size // self.args.n_replicas] for k, ft in features.items()
|
660 |
+
}
|
661 |
+
|
662 |
+
if tf.is_tensor(labels):
|
663 |
+
reduced_labels = labels[: self.args.train_batch_size // self.args.n_replicas]
|
664 |
+
elif isinstance(labels, dict):
|
665 |
+
reduced_labels = {
|
666 |
+
k: lbl[: self.args.train_batch_size // self.args.n_replicas] for k, lbl in labels.items()
|
667 |
+
}
|
668 |
+
else:
|
669 |
+
raise ValueError("The labels must be either a tf.Tensor or a dict.")
|
670 |
+
|
671 |
+
self.training_step(reduced_features, reduced_labels, nb_instances_in_global_batch)
|
672 |
+
|
673 |
+
features = {
|
674 |
+
k: tf.concat(
|
675 |
+
[ft[self.args.train_batch_size // self.args.n_replicas :], reduced_features[k]],
|
676 |
+
axis=0,
|
677 |
+
)
|
678 |
+
for k, ft in features.items()
|
679 |
+
}
|
680 |
+
|
681 |
+
if tf.is_tensor(labels):
|
682 |
+
labels = tf.concat(
|
683 |
+
[labels[self.args.train_batch_size // self.args.n_replicas :], reduced_labels], axis=0
|
684 |
+
)
|
685 |
+
elif isinstance(labels, dict):
|
686 |
+
labels = {
|
687 |
+
k: tf.concat(
|
688 |
+
[lbl[self.args.train_batch_size // self.args.n_replicas :], reduced_labels[k]],
|
689 |
+
axis=0,
|
690 |
+
)
|
691 |
+
for k, lbl in labels.items()
|
692 |
+
}
|
693 |
+
else:
|
694 |
+
raise ValueError("The labels must be either a tf.Tensor or a dict.")
|
695 |
+
|
696 |
+
gradients = self.gradient_accumulator.gradients
|
697 |
+
gradients = [
|
698 |
+
(tf.clip_by_value(grad, -self.args.max_grad_norm, self.args.max_grad_norm)) for grad in gradients
|
699 |
+
]
|
700 |
+
|
701 |
+
self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables)))
|
702 |
+
self.gradient_accumulator.reset()
|
703 |
+
|
704 |
+
@tf.function
|
705 |
+
def distributed_training_steps(self, batch):
|
706 |
+
with self.args.strategy.scope():
|
707 |
+
nb_instances_in_batch = self._compute_nb_instances(batch)
|
708 |
+
inputs = self._get_step_inputs(batch, nb_instances_in_batch)
|
709 |
+
|
710 |
+
self.args.strategy.run(self.apply_gradients, inputs)
|
711 |
+
|
712 |
+
@staticmethod
|
713 |
+
def _compute_nb_instances(batch):
|
714 |
+
labels = batch[-1]
|
715 |
+
if isinstance(labels, PerReplica):
|
716 |
+
labels = tf.concat(labels.values, axis=0)
|
717 |
+
|
718 |
+
nb_instances = tf.reduce_sum(tf.cast(labels != -100, dtype=tf.int32))
|
719 |
+
|
720 |
+
return nb_instances
|
721 |
+
|
722 |
+
@staticmethod
|
723 |
+
def _get_step_inputs(batch, nb_instances):
|
724 |
+
features, labels = batch
|
725 |
+
|
726 |
+
if isinstance(labels, PerReplica):
|
727 |
+
# need to make a `PerReplica` objects for ``nb_instances``
|
728 |
+
nb_instances = PerReplica([nb_instances] * len(labels.values))
|
729 |
+
|
730 |
+
step_inputs = (features, labels, nb_instances)
|
731 |
+
|
732 |
+
return step_inputs
|
733 |
+
|
734 |
+
def run_model(self, features, labels, training):
|
735 |
+
"""
|
736 |
+
Computes the loss of the given features and labels pair.
|
737 |
+
|
738 |
+
Subclass and override this method if you want to inject some custom behavior.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
features (`tf.Tensor`): A batch of input features.
|
742 |
+
labels (`tf.Tensor`): A batch of labels.
|
743 |
+
training (`bool`): Whether or not to run the model in training mode.
|
744 |
+
|
745 |
+
Returns:
|
746 |
+
A tuple of two `tf.Tensor`: The loss and logits.
|
747 |
+
"""
|
748 |
+
|
749 |
+
if self.args.past_index >= 0 and getattr(self, "_past", None) is not None:
|
750 |
+
features["mems"] = self._past
|
751 |
+
|
752 |
+
if isinstance(labels, (dict)):
|
753 |
+
outputs = self.model(features, training=training, **labels)[:2]
|
754 |
+
else:
|
755 |
+
outputs = self.model(features, labels=labels, training=training)[:2]
|
756 |
+
|
757 |
+
loss, logits = outputs[:2]
|
758 |
+
|
759 |
+
if self.args.past_index >= 0:
|
760 |
+
self._past = outputs[self.args.past_index]
|
761 |
+
|
762 |
+
return loss, logits
|
763 |
+
|
764 |
+
def predict(self, test_dataset: tf.data.Dataset) -> PredictionOutput:
|
765 |
+
"""
|
766 |
+
Run prediction and returns predictions and potential metrics.
|
767 |
+
|
768 |
+
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
|
769 |
+
will also return metrics, like in `evaluate()`.
|
770 |
+
|
771 |
+
Args:
|
772 |
+
test_dataset ([`~tf.data.Dataset`]):
|
773 |
+
Dataset to run the predictions on. The dataset should yield tuples of `(features, labels)` where
|
774 |
+
`features` is a dict of input features and `labels` is the labels. If `labels` is a tensor, the loss is
|
775 |
+
calculated by the model by calling `model(features, labels=labels)`. If `labels` is a dict, such as
|
776 |
+
when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by
|
777 |
+
calling `model(features, **labels)`
|
778 |
+
|
779 |
+
Returns: *NamedTuple* A namedtuple with the following keys:
|
780 |
+
|
781 |
+
- predictions (`np.ndarray`): The predictions on `test_dataset`.
|
782 |
+
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
|
783 |
+
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
|
784 |
+
labels).
|
785 |
+
"""
|
786 |
+
test_ds, steps, num_examples = self.get_test_tfdataset(test_dataset)
|
787 |
+
|
788 |
+
return self.prediction_loop(test_ds, steps, num_examples, description="Prediction")
|
789 |
+
|
790 |
+
def save_model(self, output_dir: Optional[str] = None):
|
791 |
+
"""
|
792 |
+
Will save the model, so you can reload it using `from_pretrained()`.
|
793 |
+
"""
|
794 |
+
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
795 |
+
|
796 |
+
logger.info(f"Saving model in {output_dir}")
|
797 |
+
|
798 |
+
if not isinstance(self.model, TFPreTrainedModel):
|
799 |
+
raise ValueError("Trainer.model appears to not be a PreTrainedModel")
|
800 |
+
|
801 |
+
self.model.save_pretrained(output_dir)
|