Cletrason commited on
Commit
c4df417
1 Parent(s): 026c846

Upload 2 files

Browse files
Files changed (2) hide show
  1. app (1).py +349 -0
  2. style (2).css +24 -0
app (1).py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ import utils
6
+ import datetime
7
+ import time
8
+ import psutil
9
+ import random
10
+
11
+
12
+ start_time = time.time()
13
+ is_colab = utils.is_google_colab()
14
+ state = None
15
+ current_steps = 25
16
+
17
+ class Model:
18
+ def __init__(self, name, path="", prefix=""):
19
+ self.name = name
20
+ self.path = path
21
+ self.prefix = prefix
22
+ self.pipe_t2i = None
23
+ self.pipe_i2i = None
24
+
25
+ models = [
26
+ Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
27
+ Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
28
+ Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
29
+ Model("Anything V4", "andite/anything-v4.0", ""),
30
+ Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
31
+ Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
32
+ Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
33
+ Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
34
+ Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
35
+ Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
36
+ Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
37
+ Model("Waifu", "hakurei/waifu-diffusion"),
38
+ Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
39
+ Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
40
+ Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
41
+ Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
42
+ Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
43
+ Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
44
+ Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
45
+ Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
46
+ Model("Robo Diffusion", "nousr/robo-diffusion"),
47
+ Model("Epic Diffusion", "johnslegers/epic-diffusion")
48
+ ]
49
+
50
+ custom_model = None
51
+ if is_colab:
52
+ models.insert(0, Model("Custom model"))
53
+ custom_model = models[0]
54
+
55
+ last_mode = "txt2img"
56
+ current_model = models[1] if is_colab else models[0]
57
+ current_model_path = current_model.path
58
+
59
+ if is_colab:
60
+ pipe = StableDiffusionPipeline.from_pretrained(
61
+ current_model.path,
62
+ torch_dtype=torch.float16,
63
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
64
+ safety_checker=lambda images, clip_input: (images, False)
65
+ )
66
+
67
+ else:
68
+ pipe = StableDiffusionPipeline.from_pretrained(
69
+ current_model.path,
70
+ torch_dtype=torch.float16,
71
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
72
+ )
73
+
74
+ if torch.cuda.is_available():
75
+ pipe = pipe.to("cuda")
76
+ pipe.enable_xformers_memory_efficient_attention()
77
+
78
+ device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
79
+
80
+ def error_str(error, title="Error"):
81
+ return f"""#### {title}
82
+ {error}""" if error else ""
83
+
84
+ def update_state(new_state):
85
+ global state
86
+ state = new_state
87
+
88
+ def update_state_info(old_state):
89
+ if state and state != old_state:
90
+ return gr.update(value=state)
91
+
92
+ def custom_model_changed(path):
93
+ models[0].path = path
94
+ global current_model
95
+ current_model = models[0]
96
+
97
+ def on_model_change(model_name):
98
+
99
+ prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
100
+
101
+ return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
102
+
103
+ def on_steps_change(steps):
104
+ global current_steps
105
+ current_steps = steps
106
+
107
+ def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
108
+ update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
109
+
110
+ def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
111
+
112
+ update_state(" ")
113
+
114
+ print(psutil.virtual_memory()) # print memory usage
115
+
116
+ global current_model
117
+ for model in models:
118
+ if model.name == model_name:
119
+ current_model = model
120
+ model_path = current_model.path
121
+
122
+ # generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
123
+ if seed == 0:
124
+ seed = random.randint(0, 2147483647)
125
+
126
+ generator = torch.Generator('cuda').manual_seed(seed)
127
+
128
+ try:
129
+ if img is not None:
130
+ return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
131
+ else:
132
+ return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
133
+ except Exception as e:
134
+ return None, error_str(e)
135
+
136
+ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
137
+
138
+ print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
139
+
140
+ global last_mode
141
+ global pipe
142
+ global current_model_path
143
+ if model_path != current_model_path or last_mode != "txt2img":
144
+ current_model_path = model_path
145
+
146
+ update_state(f"Loading {current_model.name} text-to-image model...")
147
+
148
+ if is_colab or current_model == custom_model:
149
+ pipe = StableDiffusionPipeline.from_pretrained(
150
+ current_model_path,
151
+ torch_dtype=torch.float16,
152
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
153
+ safety_checker=lambda images, clip_input: (images, False)
154
+ )
155
+ else:
156
+ pipe = StableDiffusionPipeline.from_pretrained(
157
+ current_model_path,
158
+ torch_dtype=torch.float16,
159
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
160
+ )
161
+ # pipe = pipe.to("cpu")
162
+ # pipe = current_model.pipe_t2i
163
+
164
+ if torch.cuda.is_available():
165
+ pipe = pipe.to("cuda")
166
+ pipe.enable_xformers_memory_efficient_attention()
167
+ last_mode = "txt2img"
168
+
169
+ prompt = current_model.prefix + prompt
170
+ result = pipe(
171
+ prompt,
172
+ negative_prompt = neg_prompt,
173
+ num_images_per_prompt=n_images,
174
+ num_inference_steps = int(steps),
175
+ guidance_scale = guidance,
176
+ width = width,
177
+ height = height,
178
+ generator = generator,
179
+ callback=pipe_callback)
180
+
181
+ # update_state(f"Done. Seed: {seed}")
182
+
183
+ return replace_nsfw_images(result)
184
+
185
+ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
186
+
187
+ print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
188
+
189
+ global last_mode
190
+ global pipe
191
+ global current_model_path
192
+ if model_path != current_model_path or last_mode != "img2img":
193
+ current_model_path = model_path
194
+
195
+ update_state(f"Loading {current_model.name} image-to-image model...")
196
+
197
+ if is_colab or current_model == custom_model:
198
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
199
+ current_model_path,
200
+ torch_dtype=torch.float16,
201
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
202
+ safety_checker=lambda images, clip_input: (images, False)
203
+ )
204
+ else:
205
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
206
+ current_model_path,
207
+ torch_dtype=torch.float16,
208
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
209
+ )
210
+ # pipe = pipe.to("cpu")
211
+ # pipe = current_model.pipe_i2i
212
+
213
+ if torch.cuda.is_available():
214
+ pipe = pipe.to("cuda")
215
+ pipe.enable_xformers_memory_efficient_attention()
216
+ last_mode = "img2img"
217
+
218
+ prompt = current_model.prefix + prompt
219
+ ratio = min(height / img.height, width / img.width)
220
+ img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
221
+ result = pipe(
222
+ prompt,
223
+ negative_prompt = neg_prompt,
224
+ num_images_per_prompt=n_images,
225
+ image = img,
226
+ num_inference_steps = int(steps),
227
+ strength = strength,
228
+ guidance_scale = guidance,
229
+ # width = width,
230
+ # height = height,
231
+ generator = generator,
232
+ callback=pipe_callback)
233
+
234
+ # update_state(f"Done. Seed: {seed}")
235
+
236
+ return replace_nsfw_images(result)
237
+
238
+ def replace_nsfw_images(results):
239
+
240
+ if is_colab:
241
+ return results.images
242
+
243
+ for i in range(len(results.images)):
244
+ if results.nsfw_content_detected[i]:
245
+ results.images[i] = Image.open("nsfw.png")
246
+ return results.images
247
+
248
+ # css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
249
+ # """
250
+ with gr.Blocks(css="style.css") as demo:
251
+ gr.HTML(
252
+ f"""
253
+ <div class="finetuned-diffusion-div">
254
+ <div>
255
+ <h1>Finetuned Diffusion</h1>
256
+ </div>
257
+ <p>
258
+ Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
259
+ <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
260
+ </p>
261
+ <p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
262
+ Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
263
+ </p>
264
+ <p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
265
+ <a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
266
+ </div>
267
+ """
268
+ )
269
+ with gr.Row():
270
+
271
+ with gr.Column(scale=55):
272
+ with gr.Group():
273
+ model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
274
+ with gr.Box(visible=False) as custom_model_group:
275
+ custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
276
+ gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
277
+
278
+ with gr.Row():
279
+ prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
280
+ generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
281
+
282
+
283
+ # image_out = gr.Image(height=512)
284
+ gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
285
+
286
+ state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
287
+ error_output = gr.Markdown()
288
+
289
+ with gr.Column(scale=45):
290
+ with gr.Tab("Options"):
291
+ with gr.Group():
292
+ neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
293
+
294
+ n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
295
+
296
+ with gr.Row():
297
+ guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
298
+ steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=75, step=1)
299
+
300
+ with gr.Row():
301
+ width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
302
+ height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
303
+
304
+ seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
305
+
306
+ with gr.Tab("Image to image"):
307
+ with gr.Group():
308
+ image = gr.Image(label="Image", height=256, tool="editor", type="pil")
309
+ strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
310
+
311
+ if is_colab:
312
+ model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
313
+ custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
314
+ # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
315
+ steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
316
+
317
+ inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
318
+ outputs = [gallery, error_output]
319
+ prompt.submit(inference, inputs=inputs, outputs=outputs)
320
+ generate.click(inference, inputs=inputs, outputs=outputs)
321
+
322
+ ex = gr.Examples([
323
+ [models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
324
+ [models[4].name, "portrait of dwayne johnson", 7.0, 35],
325
+ [models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
326
+ [models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
327
+ [models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
328
+ ], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
329
+
330
+ gr.HTML("""
331
+ <div style="border-top: 1px solid #303030;">
332
+ <br>
333
+ <p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
334
+ <p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
335
+ <p>Space by:<br>
336
+ <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
337
+ <a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
338
+ <a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
339
+ <p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
340
+ </div>
341
+ """)
342
+
343
+ demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
344
+
345
+ print(f"Space built in {time.time() - start_time:.2f} seconds")
346
+
347
+ # if not is_colab:
348
+ demo.queue(concurrency_count=1)
349
+ demo.launch(debug=is_colab, share=is_colab)
style (2).css ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .finetuned-diffusion-div div{
2
+ display:inline-flex;
3
+ align-items:center;
4
+ gap:.8rem;
5
+ font-size:1.75rem
6
+ }
7
+ .finetuned-diffusion-div div h1{
8
+ font-weight:900;
9
+ margin-bottom:7px
10
+ }
11
+ .finetuned-diffusion-div p{
12
+ margin-bottom:10px;
13
+ font-size:94%
14
+ }
15
+ a{
16
+ text-decoration:underline
17
+ }
18
+ .tabs{
19
+ margin-top:0;
20
+ margin-bottom:0
21
+ }
22
+ #gallery{
23
+ min-height:20rem
24
+ }