Upload 2 files
Browse files- app (1).py +349 -0
- style (2).css +24 -0
app (1).py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import utils
|
6 |
+
import datetime
|
7 |
+
import time
|
8 |
+
import psutil
|
9 |
+
import random
|
10 |
+
|
11 |
+
|
12 |
+
start_time = time.time()
|
13 |
+
is_colab = utils.is_google_colab()
|
14 |
+
state = None
|
15 |
+
current_steps = 25
|
16 |
+
|
17 |
+
class Model:
|
18 |
+
def __init__(self, name, path="", prefix=""):
|
19 |
+
self.name = name
|
20 |
+
self.path = path
|
21 |
+
self.prefix = prefix
|
22 |
+
self.pipe_t2i = None
|
23 |
+
self.pipe_i2i = None
|
24 |
+
|
25 |
+
models = [
|
26 |
+
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
|
27 |
+
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
|
28 |
+
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
|
29 |
+
Model("Anything V4", "andite/anything-v4.0", ""),
|
30 |
+
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
|
31 |
+
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
|
32 |
+
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
|
33 |
+
Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
|
34 |
+
Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
|
35 |
+
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
|
36 |
+
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
|
37 |
+
Model("Waifu", "hakurei/waifu-diffusion"),
|
38 |
+
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
39 |
+
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
|
40 |
+
Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
|
41 |
+
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
|
42 |
+
Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
|
43 |
+
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
|
44 |
+
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
|
45 |
+
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
|
46 |
+
Model("Robo Diffusion", "nousr/robo-diffusion"),
|
47 |
+
Model("Epic Diffusion", "johnslegers/epic-diffusion")
|
48 |
+
]
|
49 |
+
|
50 |
+
custom_model = None
|
51 |
+
if is_colab:
|
52 |
+
models.insert(0, Model("Custom model"))
|
53 |
+
custom_model = models[0]
|
54 |
+
|
55 |
+
last_mode = "txt2img"
|
56 |
+
current_model = models[1] if is_colab else models[0]
|
57 |
+
current_model_path = current_model.path
|
58 |
+
|
59 |
+
if is_colab:
|
60 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
61 |
+
current_model.path,
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
64 |
+
safety_checker=lambda images, clip_input: (images, False)
|
65 |
+
)
|
66 |
+
|
67 |
+
else:
|
68 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
69 |
+
current_model.path,
|
70 |
+
torch_dtype=torch.float16,
|
71 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
72 |
+
)
|
73 |
+
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
pipe = pipe.to("cuda")
|
76 |
+
pipe.enable_xformers_memory_efficient_attention()
|
77 |
+
|
78 |
+
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
79 |
+
|
80 |
+
def error_str(error, title="Error"):
|
81 |
+
return f"""#### {title}
|
82 |
+
{error}""" if error else ""
|
83 |
+
|
84 |
+
def update_state(new_state):
|
85 |
+
global state
|
86 |
+
state = new_state
|
87 |
+
|
88 |
+
def update_state_info(old_state):
|
89 |
+
if state and state != old_state:
|
90 |
+
return gr.update(value=state)
|
91 |
+
|
92 |
+
def custom_model_changed(path):
|
93 |
+
models[0].path = path
|
94 |
+
global current_model
|
95 |
+
current_model = models[0]
|
96 |
+
|
97 |
+
def on_model_change(model_name):
|
98 |
+
|
99 |
+
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
100 |
+
|
101 |
+
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
102 |
+
|
103 |
+
def on_steps_change(steps):
|
104 |
+
global current_steps
|
105 |
+
current_steps = steps
|
106 |
+
|
107 |
+
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
108 |
+
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
109 |
+
|
110 |
+
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
111 |
+
|
112 |
+
update_state(" ")
|
113 |
+
|
114 |
+
print(psutil.virtual_memory()) # print memory usage
|
115 |
+
|
116 |
+
global current_model
|
117 |
+
for model in models:
|
118 |
+
if model.name == model_name:
|
119 |
+
current_model = model
|
120 |
+
model_path = current_model.path
|
121 |
+
|
122 |
+
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
123 |
+
if seed == 0:
|
124 |
+
seed = random.randint(0, 2147483647)
|
125 |
+
|
126 |
+
generator = torch.Generator('cuda').manual_seed(seed)
|
127 |
+
|
128 |
+
try:
|
129 |
+
if img is not None:
|
130 |
+
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
131 |
+
else:
|
132 |
+
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
133 |
+
except Exception as e:
|
134 |
+
return None, error_str(e)
|
135 |
+
|
136 |
+
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
137 |
+
|
138 |
+
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
139 |
+
|
140 |
+
global last_mode
|
141 |
+
global pipe
|
142 |
+
global current_model_path
|
143 |
+
if model_path != current_model_path or last_mode != "txt2img":
|
144 |
+
current_model_path = model_path
|
145 |
+
|
146 |
+
update_state(f"Loading {current_model.name} text-to-image model...")
|
147 |
+
|
148 |
+
if is_colab or current_model == custom_model:
|
149 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
150 |
+
current_model_path,
|
151 |
+
torch_dtype=torch.float16,
|
152 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
153 |
+
safety_checker=lambda images, clip_input: (images, False)
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
157 |
+
current_model_path,
|
158 |
+
torch_dtype=torch.float16,
|
159 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
160 |
+
)
|
161 |
+
# pipe = pipe.to("cpu")
|
162 |
+
# pipe = current_model.pipe_t2i
|
163 |
+
|
164 |
+
if torch.cuda.is_available():
|
165 |
+
pipe = pipe.to("cuda")
|
166 |
+
pipe.enable_xformers_memory_efficient_attention()
|
167 |
+
last_mode = "txt2img"
|
168 |
+
|
169 |
+
prompt = current_model.prefix + prompt
|
170 |
+
result = pipe(
|
171 |
+
prompt,
|
172 |
+
negative_prompt = neg_prompt,
|
173 |
+
num_images_per_prompt=n_images,
|
174 |
+
num_inference_steps = int(steps),
|
175 |
+
guidance_scale = guidance,
|
176 |
+
width = width,
|
177 |
+
height = height,
|
178 |
+
generator = generator,
|
179 |
+
callback=pipe_callback)
|
180 |
+
|
181 |
+
# update_state(f"Done. Seed: {seed}")
|
182 |
+
|
183 |
+
return replace_nsfw_images(result)
|
184 |
+
|
185 |
+
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
186 |
+
|
187 |
+
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
188 |
+
|
189 |
+
global last_mode
|
190 |
+
global pipe
|
191 |
+
global current_model_path
|
192 |
+
if model_path != current_model_path or last_mode != "img2img":
|
193 |
+
current_model_path = model_path
|
194 |
+
|
195 |
+
update_state(f"Loading {current_model.name} image-to-image model...")
|
196 |
+
|
197 |
+
if is_colab or current_model == custom_model:
|
198 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
199 |
+
current_model_path,
|
200 |
+
torch_dtype=torch.float16,
|
201 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
202 |
+
safety_checker=lambda images, clip_input: (images, False)
|
203 |
+
)
|
204 |
+
else:
|
205 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
206 |
+
current_model_path,
|
207 |
+
torch_dtype=torch.float16,
|
208 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
209 |
+
)
|
210 |
+
# pipe = pipe.to("cpu")
|
211 |
+
# pipe = current_model.pipe_i2i
|
212 |
+
|
213 |
+
if torch.cuda.is_available():
|
214 |
+
pipe = pipe.to("cuda")
|
215 |
+
pipe.enable_xformers_memory_efficient_attention()
|
216 |
+
last_mode = "img2img"
|
217 |
+
|
218 |
+
prompt = current_model.prefix + prompt
|
219 |
+
ratio = min(height / img.height, width / img.width)
|
220 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
221 |
+
result = pipe(
|
222 |
+
prompt,
|
223 |
+
negative_prompt = neg_prompt,
|
224 |
+
num_images_per_prompt=n_images,
|
225 |
+
image = img,
|
226 |
+
num_inference_steps = int(steps),
|
227 |
+
strength = strength,
|
228 |
+
guidance_scale = guidance,
|
229 |
+
# width = width,
|
230 |
+
# height = height,
|
231 |
+
generator = generator,
|
232 |
+
callback=pipe_callback)
|
233 |
+
|
234 |
+
# update_state(f"Done. Seed: {seed}")
|
235 |
+
|
236 |
+
return replace_nsfw_images(result)
|
237 |
+
|
238 |
+
def replace_nsfw_images(results):
|
239 |
+
|
240 |
+
if is_colab:
|
241 |
+
return results.images
|
242 |
+
|
243 |
+
for i in range(len(results.images)):
|
244 |
+
if results.nsfw_content_detected[i]:
|
245 |
+
results.images[i] = Image.open("nsfw.png")
|
246 |
+
return results.images
|
247 |
+
|
248 |
+
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
249 |
+
# """
|
250 |
+
with gr.Blocks(css="style.css") as demo:
|
251 |
+
gr.HTML(
|
252 |
+
f"""
|
253 |
+
<div class="finetuned-diffusion-div">
|
254 |
+
<div>
|
255 |
+
<h1>Finetuned Diffusion</h1>
|
256 |
+
</div>
|
257 |
+
<p>
|
258 |
+
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
259 |
+
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
260 |
+
</p>
|
261 |
+
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
262 |
+
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
263 |
+
</p>
|
264 |
+
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
|
265 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
266 |
+
</div>
|
267 |
+
"""
|
268 |
+
)
|
269 |
+
with gr.Row():
|
270 |
+
|
271 |
+
with gr.Column(scale=55):
|
272 |
+
with gr.Group():
|
273 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
274 |
+
with gr.Box(visible=False) as custom_model_group:
|
275 |
+
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
|
276 |
+
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
|
277 |
+
|
278 |
+
with gr.Row():
|
279 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
280 |
+
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
281 |
+
|
282 |
+
|
283 |
+
# image_out = gr.Image(height=512)
|
284 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
285 |
+
|
286 |
+
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
287 |
+
error_output = gr.Markdown()
|
288 |
+
|
289 |
+
with gr.Column(scale=45):
|
290 |
+
with gr.Tab("Options"):
|
291 |
+
with gr.Group():
|
292 |
+
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
293 |
+
|
294 |
+
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
295 |
+
|
296 |
+
with gr.Row():
|
297 |
+
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
298 |
+
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=75, step=1)
|
299 |
+
|
300 |
+
with gr.Row():
|
301 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
302 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
|
303 |
+
|
304 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
305 |
+
|
306 |
+
with gr.Tab("Image to image"):
|
307 |
+
with gr.Group():
|
308 |
+
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
309 |
+
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
310 |
+
|
311 |
+
if is_colab:
|
312 |
+
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
313 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
314 |
+
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
315 |
+
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
316 |
+
|
317 |
+
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
318 |
+
outputs = [gallery, error_output]
|
319 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
320 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
321 |
+
|
322 |
+
ex = gr.Examples([
|
323 |
+
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
|
324 |
+
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
|
325 |
+
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
|
326 |
+
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
|
327 |
+
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
|
328 |
+
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
329 |
+
|
330 |
+
gr.HTML("""
|
331 |
+
<div style="border-top: 1px solid #303030;">
|
332 |
+
<br>
|
333 |
+
<p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
|
334 |
+
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
|
335 |
+
<p>Space by:<br>
|
336 |
+
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
|
337 |
+
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
|
338 |
+
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
|
339 |
+
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
|
340 |
+
</div>
|
341 |
+
""")
|
342 |
+
|
343 |
+
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
344 |
+
|
345 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
346 |
+
|
347 |
+
# if not is_colab:
|
348 |
+
demo.queue(concurrency_count=1)
|
349 |
+
demo.launch(debug=is_colab, share=is_colab)
|
style (2).css
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.finetuned-diffusion-div div{
|
2 |
+
display:inline-flex;
|
3 |
+
align-items:center;
|
4 |
+
gap:.8rem;
|
5 |
+
font-size:1.75rem
|
6 |
+
}
|
7 |
+
.finetuned-diffusion-div div h1{
|
8 |
+
font-weight:900;
|
9 |
+
margin-bottom:7px
|
10 |
+
}
|
11 |
+
.finetuned-diffusion-div p{
|
12 |
+
margin-bottom:10px;
|
13 |
+
font-size:94%
|
14 |
+
}
|
15 |
+
a{
|
16 |
+
text-decoration:underline
|
17 |
+
}
|
18 |
+
.tabs{
|
19 |
+
margin-top:0;
|
20 |
+
margin-bottom:0
|
21 |
+
}
|
22 |
+
#gallery{
|
23 |
+
min-height:20rem
|
24 |
+
}
|