hm-auch commited on
Commit
70b5fc5
1 Parent(s): 5a4e613

inital commit

Browse files
.gitattributes CHANGED
@@ -26,3 +26,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ *.data- filter=lfs diff=lfs merge=lfs -text
30
+ *.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+
3
+ import gradio as gr
4
+ import tensorflow as tf
5
+
6
+ from official.nlp import optimization # to create AdamW optimizer
7
+
8
+ MODEL_DIRECTORY = 'save/modelV1'
9
+ PRETRAINED_MODEL_NAME = 'dbmdz/bert-base-german-cased'
10
+ TOKENIZER = transformers.BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)
11
+ MAX_SEQUENCE_LENGTH = 256
12
+ EPOCHS = 2
13
+ OPTIMIZER = 'adamw'
14
+ INIT_LR = 3e-5
15
+ LOSS = tf.keras.losses.BinaryCrossentropy(from_logits=False)
16
+ METRICS = tf.metrics.BinaryAccuracy()
17
+
18
+ def compile_model(model):
19
+ steps_per_epoch = 10
20
+ num_train_steps = steps_per_epoch * EPOCHS
21
+ num_warmup_steps = int(0.1*num_train_steps)
22
+
23
+ optimizer = optimization.create_optimizer(
24
+ init_lr=INIT_LR,
25
+ num_train_steps=steps_per_epoch,
26
+ num_warmup_steps=num_warmup_steps,
27
+ optimizer_type=OPTIMIZER
28
+ )
29
+
30
+ model.compile(optimizer=optimizer, loss=LOSS, metrics=[METRICS])
31
+ return model
32
+
33
+ hs_detection_model = tf.keras.models.load_model(MODEL_DIRECTORY, compile=False) #tf.keras.models.load_model('save/kerasmodel/model.h5') #tf.saved_model.load('save/model') #tf.keras.models.load_model('save/model')
34
+ compile_model(hs_detection_model)
35
+
36
+ def encode(sentences):
37
+ return TOKENIZER.batch_encode_plus(
38
+ sentences,
39
+ max_length=MAX_SEQUENCE_LENGTH, # set the length of the sequences
40
+ add_special_tokens=True, # add [CLS] and [SEP] tokens
41
+ return_attention_mask=True,
42
+ return_token_type_ids=False, # not needed for this type of ML task
43
+ pad_to_max_length=True, # add 0 pad tokens to the sequences less than max_length
44
+ return_tensors='tf'
45
+ )
46
+
47
+ def inference(sentence):
48
+ print(sentence)
49
+ encoded_sentence = encode([sentence])
50
+ print(encoded_sentence)
51
+ predicition = hs_detection_model.predict(encoded_sentence.values())
52
+ print(predicition)
53
+ return predicition
54
+
55
+ iface = gr.Interface(fn=inference, inputs="text", outputs="text") #, live=True)
56
+ iface.launch()
save/modelV1/keras_metadata.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5972b15e2cc31b72e34a938e1d9614cf6a9d2b1872abbc654453ab5f613693a2
3
+ size 155363
save/modelV1/saved_model.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccb2afb1ffb3c867ae345e7d43af0e20f3f476c83cb86c838a07bf703c216fa4
3
+ size 6651882
save/modelV1/variables/variables.data-00000-of-00001 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7940b2394fa52153c18be7b6007423ca74bb4d346b1f808c5ca94e4951090140
3
+ size 1319391849
save/modelV1/variables/variables.index ADDED
Binary file (40.6 kB). View file