Spaces:
Runtime error
Runtime error
Commit
·
34417e8
1
Parent(s):
3b31d45
Update app.py
Browse files
app.py
CHANGED
@@ -29,6 +29,51 @@ from huggingface_hub import hf_hub_download
|
|
29 |
from huggingface_hub import login
|
30 |
from datasets import load_dataset
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
#dataset = load_dataset("csv", data_files="./data.csv")
|
33 |
|
34 |
|
@@ -209,7 +254,10 @@ with gr.Blocks() as demo:
|
|
209 |
#@rate.change(inputs=rate, outputs=name,_js="window.location.reload()")
|
210 |
#@celsci.change(inputs=celsci, outputs=rate,_js="window.location.reload()")
|
211 |
#def secwork(name):
|
212 |
-
# load_data()
|
|
|
|
|
|
|
213 |
def backup_db():
|
214 |
shutil.copyfile(DB_FILE, "./reviews.db")
|
215 |
db = sqlite3.connect(DB_FILE)
|
|
|
29 |
from huggingface_hub import login
|
30 |
from datasets import load_dataset
|
31 |
|
32 |
+
import torch
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
34 |
+
from threading import Thread
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
|
37 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16)
|
38 |
+
model = model.to('cuda:0')
|
39 |
+
|
40 |
+
class StopOnTokens(StoppingCriteria):
|
41 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
42 |
+
stop_ids = [29, 0]
|
43 |
+
for stop_id in stop_ids:
|
44 |
+
if input_ids[0][-1] == stop_id:
|
45 |
+
return True
|
46 |
+
return False
|
47 |
+
|
48 |
+
def predict(message, history):
|
49 |
+
|
50 |
+
history_transformer_format = history + [[message, ""]]
|
51 |
+
stop = StopOnTokens()
|
52 |
+
|
53 |
+
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
|
54 |
+
for item in history_transformer_format])
|
55 |
+
|
56 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
57 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
58 |
+
generate_kwargs = dict(
|
59 |
+
model_inputs,
|
60 |
+
streamer=streamer,
|
61 |
+
max_new_tokens=1024,
|
62 |
+
do_sample=True,
|
63 |
+
top_p=0.95,
|
64 |
+
top_k=1000,
|
65 |
+
temperature=1.0,
|
66 |
+
num_beams=1,
|
67 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
68 |
+
)
|
69 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
70 |
+
t.start()
|
71 |
+
|
72 |
+
partial_message = ""
|
73 |
+
for new_token in streamer:
|
74 |
+
if new_token != '<':
|
75 |
+
partial_message += new_token
|
76 |
+
yield partial_message
|
77 |
#dataset = load_dataset("csv", data_files="./data.csv")
|
78 |
|
79 |
|
|
|
254 |
#@rate.change(inputs=rate, outputs=name,_js="window.location.reload()")
|
255 |
#@celsci.change(inputs=celsci, outputs=rate,_js="window.location.reload()")
|
256 |
#def secwork(name):
|
257 |
+
# load_data()
|
258 |
+
with gr.Row()
|
259 |
+
with gr.Column():
|
260 |
+
dem=gr.ChatInterface(predict).queue()
|
261 |
def backup_db():
|
262 |
shutil.copyfile(DB_FILE, "./reviews.db")
|
263 |
db = sqlite3.connect(DB_FILE)
|