Spaces:
Runtime error
Runtime error
Commit
·
960cd05
1
Parent(s):
3516070
Update app.py
Browse files
app.py
CHANGED
@@ -24,11 +24,92 @@ import time
|
|
24 |
|
25 |
from huggingface_hub import hf_hub_download
|
26 |
|
|
|
27 |
#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")
|
28 |
|
29 |
from huggingface_hub import login
|
30 |
from datasets import load_dataset
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
#dataset = load_dataset("csv", data_files="./data.csv")
|
33 |
|
34 |
|
@@ -256,5 +337,5 @@ scheduler2.start()
|
|
256 |
scheduler3 = BackgroundScheduler()
|
257 |
scheduler3.add_job(func=backup_db_csv, trigger="interval", seconds=3666)
|
258 |
scheduler3.start()
|
259 |
-
|
260 |
demo.launch()
|
|
|
24 |
|
25 |
from huggingface_hub import hf_hub_download
|
26 |
|
27 |
+
|
28 |
#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")
|
29 |
|
30 |
from huggingface_hub import login
|
31 |
from datasets import load_dataset
|
32 |
|
33 |
+
client = InferenceClient(
|
34 |
+
"mistralai/Mistral-7B-Instruct-v0.1"
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def format_prompt(message, history):
|
39 |
+
prompt = "<s>"
|
40 |
+
for user_prompt, bot_response in history:
|
41 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
42 |
+
prompt += f" {bot_response}</s> "
|
43 |
+
prompt += f"[INST] {message} [/INST]"
|
44 |
+
return prompt
|
45 |
+
|
46 |
+
def generate(
|
47 |
+
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
48 |
+
):
|
49 |
+
temperature = float(temperature)
|
50 |
+
if temperature < 1e-2:
|
51 |
+
temperature = 1e-2
|
52 |
+
top_p = float(top_p)
|
53 |
+
|
54 |
+
generate_kwargs = dict(
|
55 |
+
temperature=temperature,
|
56 |
+
max_new_tokens=max_new_tokens,
|
57 |
+
top_p=top_p,
|
58 |
+
repetition_penalty=repetition_penalty,
|
59 |
+
do_sample=True,
|
60 |
+
seed=42,
|
61 |
+
)
|
62 |
+
|
63 |
+
formatted_prompt = format_prompt(prompt, history)
|
64 |
+
|
65 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
66 |
+
output = ""
|
67 |
+
|
68 |
+
for response in stream:
|
69 |
+
output += response.token.text
|
70 |
+
yield output
|
71 |
+
return output
|
72 |
+
|
73 |
+
|
74 |
+
additional_inputs=[
|
75 |
+
gr.Slider(
|
76 |
+
label="Temperature",
|
77 |
+
value=0.9,
|
78 |
+
minimum=0.0,
|
79 |
+
maximum=1.0,
|
80 |
+
step=0.05,
|
81 |
+
interactive=True,
|
82 |
+
info="Higher values produce more diverse outputs",
|
83 |
+
),
|
84 |
+
gr.Slider(
|
85 |
+
label="Max new tokens",
|
86 |
+
value=256,
|
87 |
+
minimum=0,
|
88 |
+
maximum=5000,
|
89 |
+
step=64,
|
90 |
+
interactive=True,
|
91 |
+
info="The maximum numbers of new tokens",
|
92 |
+
),
|
93 |
+
gr.Slider(
|
94 |
+
label="Top-p (nucleus sampling)",
|
95 |
+
value=0.90,
|
96 |
+
minimum=0.0,
|
97 |
+
maximum=1,
|
98 |
+
step=0.05,
|
99 |
+
interactive=True,
|
100 |
+
info="Higher values sample more low-probability tokens",
|
101 |
+
),
|
102 |
+
gr.Slider(
|
103 |
+
label="Repetition penalty",
|
104 |
+
value=1.2,
|
105 |
+
minimum=1.0,
|
106 |
+
maximum=2.0,
|
107 |
+
step=0.05,
|
108 |
+
interactive=True,
|
109 |
+
info="Penalize repeated tokens",
|
110 |
+
)
|
111 |
+
]
|
112 |
+
|
113 |
#dataset = load_dataset("csv", data_files="./data.csv")
|
114 |
|
115 |
|
|
|
337 |
scheduler3 = BackgroundScheduler()
|
338 |
scheduler3.add_job(func=backup_db_csv, trigger="interval", seconds=3666)
|
339 |
scheduler3.start()
|
340 |
+
demo.queue()
|
341 |
demo.launch()
|