Spaces:
Running
Running
import re | |
import streamlit as st | |
import requests | |
import pandas as pd | |
from io import StringIO | |
import plotly.graph_objs as go | |
from yall import create_yall | |
def convert_markdown_table_to_dataframe(md_content): | |
""" | |
Converts markdown table to Pandas DataFrame, handling special characters and links, | |
extracts Hugging Face URLs, and adds them to a new column. | |
""" | |
# Remove leading and trailing | characters | |
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE) | |
# Create DataFrame from cleaned content | |
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python') | |
# Remove the first row after the header | |
df = df.drop(0, axis=0) | |
# Strip whitespace from column names | |
df.columns = df.columns.str.strip() | |
# Extract Hugging Face URLs and add them to a new column | |
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)' | |
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None) | |
# Clean Model column to have only the model link text | |
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x)) | |
return df | |
def create_bar_chart(df, category): | |
"""Create and display a bar chart for a given category.""" | |
st.write(f"### {category} Scores") | |
# Sort the DataFrame based on the category score | |
sorted_df = df[['Model', category]].sort_values(by=category, ascending=True) | |
# Create the bar chart with color gradient | |
fig = go.Figure(go.Bar( | |
x=sorted_df[category], | |
y=sorted_df['Model'], | |
orientation='h', | |
marker=dict(color=sorted_df[category], colorscale='Magma') | |
)) | |
# Update layout for better readability | |
fig.update_layout( | |
xaxis_title=category, | |
yaxis_title="Model", | |
margin=dict(l=20, r=20, t=20, b=20) | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
def main(): | |
st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide") | |
st.title("๐ YALL - Yet Another LLM Leaderboard") | |
st.markdown("Leaderboard made with [๐ง LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite. It's a collection of my own evaluations.") | |
content = create_yall() | |
if content: | |
try: | |
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench'] | |
# Display dataframe | |
df = convert_markdown_table_to_dataframe(content) | |
for col in score_columns: | |
df[col] = pd.to_numeric(df[col].str.strip(), errors='coerce') | |
st.dataframe(df, use_container_width=True) | |
# Full-width plot for the first category | |
create_bar_chart(df, score_columns[0]) | |
# Next two plots in two columns | |
col1, col2 = st.columns(2) | |
with col1: | |
create_bar_chart(df, score_columns[1]) | |
with col2: | |
create_bar_chart(df, score_columns[2]) | |
# Last two plots in two columns | |
col3, col4 = st.columns(2) | |
with col3: | |
create_bar_chart(df, score_columns[3]) | |
with col4: | |
create_bar_chart(df, score_columns[4]) | |
except Exception as e: | |
st.error("An error occurred while processing the markdown table.") | |
st.error(str(e)) | |
else: | |
st.error("Failed to download the content from the URL provided.") | |
if __name__ == "__main__": | |
main() |