CultriX's picture
Update app.py
b575dce verified
raw
history blame
16.8 kB
import streamlit as st
import pandas as pd
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
from itertools import combinations
import re
from functools import cache
from io import StringIO
from yall import create_yall
import plotly.graph_objs as go
def calculate_pages(df, items_per_page):
return -(-len(df) // items_per_page) # Equivalent to math.ceil(len(df) / items_per_page)
# Function to get model info from Hugging Face API using caching
@cache
def cached_model_info(api, model):
try:
return api.model_info(repo_id=str(model))
except (RepositoryNotFoundError, RevisionNotFoundError):
return None
# Function to get model info from DataFrame and update it with likes and tags
@st.cache
def get_model_info(df):
api = HfApi()
for index, row in df.iterrows():
model_info = cached_model_info(api, row['Model'].strip())
if model_info:
df.loc[index, 'Likes'] = model_info.likes
df.loc[index, 'Tags'] = ', '.join(model_info.tags)
else:
df.loc[index, 'Likes'] = -1
df.loc[index, 'Tags'] = ''
return df
# Function to convert markdown table to DataFrame and extract Hugging Face URLs
def convert_markdown_table_to_dataframe(md_content):
"""
Converts markdown table to Pandas DataFrame, handling special characters and links,
extracts Hugging Face URLs, and adds them to a new column.
"""
# Remove leading and trailing | characters
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
# Create DataFrame from cleaned content
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
# Remove the first row after the header
df = df.drop(0, axis=0)
# Strip whitespace from column names
df.columns = df.columns.str.strip()
# Extract Hugging Face URLs and add them to a new column
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)
# Clean Model column to have only the model link text
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))
return df
@st.cache_data
def get_model_info(df):
api = HfApi()
# Initialize new columns for likes and tags
df['Likes'] = None
df['Tags'] = None
# Iterate through DataFrame rows
for index, row in df.iterrows():
model = row['Model'].strip()
try:
model_info = api.model_info(repo_id=str(model))
df.loc[index, 'Likes'] = model_info.likes
df.loc[index, 'Tags'] = ', '.join(model_info.tags)
except (RepositoryNotFoundError, RevisionNotFoundError):
df.loc[index, 'Likes'] = -1
df.loc[index, 'Tags'] = ''
return df
def calculate_highest_combined_score(data, column):
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
# Ensure the column exists and has numeric data
if column not in data.columns or not pd.api.types.is_numeric_dtype(data[column]):
return column, {}
scores = data[column].dropna().tolist()
models = data['Model'].tolist()
top_combinations = {r: [] for r in range(2, 5)}
for r in range(2, 5):
for combination in combinations(zip(scores, models), r):
combined_score = sum(score for score, _ in combination)
top_combinations[r].append((combined_score, tuple(model for _, model in combination)))
top_combinations[r].sort(key=lambda x: x[0], reverse=True)
top_combinations[r] = top_combinations[r][:5]
return column, top_combinations
# Modified function to display the results of the highest combined scores using st.dataframe
def display_highest_combined_scores(data):
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
with st.spinner('Calculating highest combined scores...'):
results = [calculate_highest_combined_score(data, col) for col in score_columns]
for column, top_combinations in results:
st.subheader(f"Top Combinations for {column}")
for r, combinations in top_combinations.items():
# Prepare data for DataFrame
rows = [{'Score': score, 'Models': ', '.join(combination)} for score, combination in combinations]
df = pd.DataFrame(rows)
# Display using st.dataframe
st.markdown(f"**Number of Models: {r}**")
st.dataframe(df, height=150) # Adjust height as necessary
# Function to create bar chart for a given category
def create_bar_chart(df, category):
"""Create and display a bar chart for a given category."""
st.write(f"### {category} Scores")
# Sort the DataFrame based on the category score
sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)
# Create the bar chart with a color gradient (using 'Viridis' color scale as an example)
fig = go.Figure(go.Bar(
x=sorted_df[category],
y=sorted_df['Model'],
orientation='h',
marker=dict(color=sorted_df[category], colorscale='Spectral') # You can change 'Viridis' to another color scale
))
# Update layout for better readability
fig.update_layout(
margin=dict(l=20, r=20, t=20, b=20)
)
# Adjust the height of the chart based on the number of rows in the DataFrame
st.plotly_chart(fig, use_container_width=True, height=len(df) * 35)
# Main function to run the Streamlit app
def main():
# Set page configuration and title
st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
st.title("🏆 YALL - Yet Another LLM Leaderboard")
st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")
# Create tabs for leaderboard and about section
content = create_yall()
tab1, tab2 = st.tabs(["🏆 Leaderboard", "📝 About"])
# Leaderboard tab
with tab1:
if content:
try:
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
# Display dataframe
full_df = convert_markdown_table_to_dataframe(content)
for col in score_columns:
# Corrected use of pd.to_numeric
full_df[col] = pd.to_numeric(full_df[col].str.strip(), errors='coerce')
full_df = get_model_info(full_df)
full_df['Tags'] = full_df['Tags'].fillna('')
df = pd.DataFrame(columns=full_df.columns)
# Toggles for filtering by tags
show_phi = st.checkbox("Phi (2.8B)", value=True)
show_mistral = st.checkbox("Mistral (7B)", value=True)
show_other = st.checkbox("Other", value=True)
# Create a DataFrame based on selected filters
dfs_to_concat = []
if show_phi:
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('phi,|phi-msft,')])
if show_mistral:
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('mistral,')])
if show_other:
other_df = full_df[~full_df['Tags'].str.lower().str.contains('phi,|phi-msft,|mistral,')]
dfs_to_concat.append(other_df)
# Concatenate the DataFrames
if dfs_to_concat:
df = pd.concat(dfs_to_concat, ignore_index=True)
# Add a search bar
search_query = st.text_input("Search models", "")
# Filter the DataFrame based on the search query
if search_query:
df = df[df['Model'].str.contains(search_query, case=False)]
# Add a selectbox for page selection
items_per_page = 30
pages = calculate_pages(df, items_per_page)
page = st.selectbox("Page", list(range(1, pages + 1)))
# Sort the DataFrame by 'Average' column in descending order
df = df.sort_values(by='Average', ascending=False)
# Slice the DataFrame based on the selected page
start = (page - 1) * items_per_page
end = start + items_per_page
df = df[start:end]
# Display the filtered DataFrame or the entire leaderboard
st.dataframe(
df[['Model'] + score_columns + ['Likes', 'URL']],
use_container_width=True,
column_config={
"Likes": st.column_config.NumberColumn(
"Likes",
help="Number of likes on Hugging Face",
format="%d ❤️",
),
"URL": st.column_config.LinkColumn("URL"),
},
hide_index=True,
height=len(df) * 37,
)
selected_models = st.multiselect('Select models to compare', df['Model'].unique())
comparison_df = df[df['Model'].isin(selected_models)]
st.dataframe(comparison_df)
# Add a row with two columns for the buttons
button_row = st.columns(2)
# Add the "Export to CSV" button in the first column
with button_row[0]:
if st.button("Export to CSV"):
# Export the DataFrame to CSV
csv_data = df.to_csv(index=False)
# Create a link to download the CSV file
st.download_button(
label="Download CSV",
data=csv_data,
file_name="leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
# Add the new button in the second column
with button_row[1]:
if st.button("Fetch Top Mergeki-Configs"):
# Export the DataFrame to CSV and save it to /tmp/models.csv
df.to_csv('/tmp/models.csv', index=False)# Add a button to export data to CSV
# Load the CSV data
df = pd.read_csv('/tmp/models.csv')
# Sort the data by the second column (assuming the column name is 'Average')
df_sorted = df.sort_values(by='Average', ascending=False)
# Open the file in append mode
with open('configurations.txt', 'a') as file:
# Get model cards for the top 20 entries
for index, row in df_sorted.head(20).iterrows():
model_name = row['Model'].rstrip()
card = ModelCard.load(model_name)
file.write(f'Model Name: {model_name}\n')
file.write(f'Scores: {row["Average"]}\n') # Assuming 'Average' is the benchmark score
file.write(f'AGIEval: {row["AGIEval"]}\n')
file.write(f'GPT4All: {row["GPT4All"]}\n')
file.write(f'TruthfulQA: {row["TruthfulQA"]}\n')
file.write(f'Bigbench: {row["Bigbench"]}\n')
file.write(f'Model Card: {card}\n')
# Open the second file in read mode
with open('configurations.txt', 'r') as file:
# Read the content
content = file.read()
# Find all text between 'yaml' and '```'
matches = re.findall(r'yaml(.*?)```', content, re.DOTALL)
# Open the file 'configurations2.txt' in write mode
with open('configurations2.txt', 'w') as file:
# Write the matches to the file
for row, match in zip(df_sorted[['Model', 'Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']].head(20).values, matches):
file.write(f'Model Name: {row[0]}\n')
file.write(f'Scores: {row[1]}\n')
file.write(f'AGIEval: {row[2]}\n')
file.write(f'GPT4All: {row[3]}\n')
file.write(f'TruthfulQA: {row[4]}\n')
file.write(f'Bigbench: {row[5]}\n')
file.write('yaml' + match + '```\n')
# Provide a link to download the generated file
st.markdown('[Download configurations](file:configurations2.txt)')
# Full-width plot for the first category
create_bar_chart(df, score_columns[0])
# Next two plots in two columns
col1, col2 = st.columns(2)
with col1:
create_bar_chart(df, score_columns[1])
with col2:
create_bar_chart(df, score_columns[2])
# Last two plots in two columns
col3, col4 = st.columns(2)
with col3:
create_bar_chart(df, score_columns[3])
with col4:
create_bar_chart(df, score_columns[4])
display_highest_combined_scores(full_df) # Call to display the calculated scores
except Exception as e:
st.error("An error occurred while processing the markdown table.")
st.error(str(e))
else:
st.error("Failed to download the content from the URL provided.")
# About tab
with tab2:
st.markdown('''
### Nous benchmark suite
Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks:
* [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math`
* **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa`
* [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc`
* [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects`
### Reproducibility
You can easily reproduce these results using 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf).
### Clone this space
You can create your own leaderboard with your LLM AutoEval results on GitHub Gist. You just need to clone this space and specify two variables:
* Change the `gist_id` in [yall.py](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard/blob/main/yall.py#L126).
* Create "New Secret" in Settings > Variables and secrets (name: "github", value: [your GitHub token](https://github.com/settings/tokens))
A special thanks to [gblazex](https://huggingface.co/gblazex) for providing many evaluations.
''')
# Run the main function if this script is run directly
if __name__ == "__main__":
main()