Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,18 @@ from yall import create_yall
|
|
11 |
from functools import cache
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Function to get model info from Hugging Face API using caching
|
16 |
@cache
|
@@ -20,11 +32,20 @@ def cached_model_info(api, model):
|
|
20 |
except (RepositoryNotFoundError, RevisionNotFoundError):
|
21 |
return None
|
22 |
|
23 |
-
# Function to
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
28 |
for index, row in df.iterrows():
|
29 |
model_info = cached_model_info(api, row['Model'].strip())
|
30 |
if model_info:
|
@@ -35,57 +56,39 @@ def get_model_info(df):
|
|
35 |
df.loc[index, 'Tags'] = ''
|
36 |
return df
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
"""
|
41 |
-
Converts markdown table to Pandas DataFrame, handling special characters and links,
|
42 |
-
extracts Hugging Face URLs, and adds them to a new column.
|
43 |
-
"""
|
44 |
-
# Remove leading and trailing | characters
|
45 |
-
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
|
46 |
-
|
47 |
-
# Create DataFrame from cleaned content
|
48 |
-
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
|
49 |
-
|
50 |
-
# Remove the first row after the header
|
51 |
-
df = df.drop(0, axis=0)
|
52 |
-
|
53 |
-
# Strip whitespace from column names
|
54 |
-
df.columns = df.columns.str.strip()
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
return df
|
64 |
-
# Function to get model info from Hugging Face API using caching
|
65 |
-
@cache
|
66 |
-
def cached_model_info(api, model):
|
67 |
-
try:
|
68 |
-
return api.model_info(repo_id=str(model))
|
69 |
-
except (RepositoryNotFoundError, RevisionNotFoundError):
|
70 |
-
return None
|
71 |
|
72 |
-
# Function to convert markdown table to DataFrame and extract Hugging Face URLs
|
73 |
-
def convert_markdown_table_to_dataframe(md_content):
|
74 |
-
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
|
75 |
-
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
|
76 |
-
df = df.drop(0, axis=0)
|
77 |
-
df.columns = df.columns.str.strip()
|
78 |
-
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
|
79 |
-
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)
|
80 |
-
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))
|
81 |
-
return df
|
82 |
|
83 |
# Function to get model info from DataFrame and update it with likes and tags
|
84 |
@st.cache
|
85 |
def get_model_info(df):
|
86 |
api = HfApi()
|
87 |
-
|
88 |
-
df['Tags'] = None
|
89 |
for index, row in df.iterrows():
|
90 |
model_info = cached_model_info(api, row['Model'].strip())
|
91 |
if model_info:
|
@@ -96,8 +99,13 @@ def get_model_info(df):
|
|
96 |
df.loc[index, 'Tags'] = ''
|
97 |
return df
|
98 |
|
99 |
-
#
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
# Function to calculate the highest combined score for a given column
|
103 |
def calculate_highest_combined_score(data, column):
|
@@ -111,16 +119,6 @@ def calculate_highest_combined_score(data, column):
|
|
111 |
top_combinations[r] = sorted(top_combinations[r], key=lambda x: x[0], reverse=True)[:3]
|
112 |
return column, top_combinations
|
113 |
|
114 |
-
# Function to display the results of the highest combined scores
|
115 |
-
def display_highest_combined_scores(data):
|
116 |
-
with st.spinner('Calculating highest combined scores...'):
|
117 |
-
results = [calculate_highest_combined_score(data, col) for col in score_columns]
|
118 |
-
for column, top_combinations in results:
|
119 |
-
st.subheader(f"Top Combinations for {column}")
|
120 |
-
for r, combinations in top_combinations.items():
|
121 |
-
st.write(f"**Number of Models: {r}**")
|
122 |
-
for score, combination in combinations:
|
123 |
-
st.write(f"Score: {score}, Models: {', '.join(combination)}")
|
124 |
|
125 |
# Function to create and display charts (existing functions can be reused or modified as needed)
|
126 |
|
|
|
11 |
from functools import cache
|
12 |
|
13 |
|
14 |
+
# Importing necessary libraries
|
15 |
+
import streamlit as st
|
16 |
+
import pandas as pd
|
17 |
+
from io import StringIO
|
18 |
+
import plotly.graph_objs as go
|
19 |
+
from huggingface_hub import HfApi
|
20 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
21 |
+
from itertools import combinations
|
22 |
+
import time
|
23 |
+
from collections import Counter
|
24 |
+
import re
|
25 |
+
from functools import cache
|
26 |
|
27 |
# Function to get model info from Hugging Face API using caching
|
28 |
@cache
|
|
|
32 |
except (RepositoryNotFoundError, RevisionNotFoundError):
|
33 |
return None
|
34 |
|
35 |
+
# Function to convert markdown table to DataFrame and extract Hugging Face URLs
|
36 |
+
def convert_markdown_table_to_dataframe(md_content):
|
37 |
+
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
|
38 |
+
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
|
39 |
+
df = df.drop(0, axis=0)
|
40 |
+
df.columns = df.columns.str.strip()
|
41 |
+
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
|
42 |
+
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)
|
43 |
+
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))
|
44 |
+
return df
|
45 |
|
46 |
+
# Function to get and update model info in the DataFrame
|
47 |
+
def get_and_update_model_info(df):
|
48 |
+
api = HfApi()
|
49 |
for index, row in df.iterrows():
|
50 |
model_info = cached_model_info(api, row['Model'].strip())
|
51 |
if model_info:
|
|
|
56 |
df.loc[index, 'Tags'] = ''
|
57 |
return df
|
58 |
|
59 |
+
# Define the score columns
|
60 |
+
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# Function to calculate the highest combined score for a given column
|
63 |
+
def calculate_highest_combined_score(data, column):
|
64 |
+
scores = data[column].dropna().tolist() # Ensure to drop NaN values to avoid calculation errors
|
65 |
+
models = data['Model'].dropna().tolist()
|
66 |
+
top_combinations = {2: [], 3: [], 4: [], 5: [], 6: []}
|
67 |
+
for r in range(2, 7):
|
68 |
+
for combination in combinations(zip(scores, models), r):
|
69 |
+
combined_score = sum(score for score, _ in combination)
|
70 |
+
top_combinations[r].append((combined_score, tuple(model for _, model in combination)))
|
71 |
+
top_combinations[r] = sorted(top_combinations[r], key=lambda x: x[0], reverse=True)[:3]
|
72 |
+
return column, top_combinations
|
73 |
|
74 |
+
# Function to display the results of the highest combined scores
|
75 |
+
def display_highest_combined_scores(data):
|
76 |
+
for column in score_columns:
|
77 |
+
if column in data:
|
78 |
+
_, top_combinations = calculate_highest_combined_score(data, column)
|
79 |
+
st.subheader(f"Top Combinations for {column}")
|
80 |
+
for r, combinations in top_combinations.items():
|
81 |
+
st.write(f"**Number of Models: {r}**")
|
82 |
+
for score, combination in combinations:
|
83 |
+
st.write(f"Score: {score}, Models: {', '.join(combination)}")
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Function to get model info from DataFrame and update it with likes and tags
|
88 |
@st.cache
|
89 |
def get_model_info(df):
|
90 |
api = HfApi()
|
91 |
+
|
|
|
92 |
for index, row in df.iterrows():
|
93 |
model_info = cached_model_info(api, row['Model'].strip())
|
94 |
if model_info:
|
|
|
99 |
df.loc[index, 'Tags'] = ''
|
100 |
return df
|
101 |
|
102 |
+
# Function to get model info from Hugging Face API using caching
|
103 |
+
@cache
|
104 |
+
def cached_model_info(api, model):
|
105 |
+
try:
|
106 |
+
return api.model_info(repo_id=str(model))
|
107 |
+
except (RepositoryNotFoundError, RevisionNotFoundError):
|
108 |
+
return None
|
109 |
|
110 |
# Function to calculate the highest combined score for a given column
|
111 |
def calculate_highest_combined_score(data, column):
|
|
|
119 |
top_combinations[r] = sorted(top_combinations[r], key=lambda x: x[0], reverse=True)[:3]
|
120 |
return column, top_combinations
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Function to create and display charts (existing functions can be reused or modified as needed)
|
124 |
|