import streamlit as st import pandas as pd from huggingface_hub import HfApi, ModelCard from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError import re from io import StringIO from yall import create_yall import plotly.graph_objs as go def calculate_pages(df, items_per_page): """Calculate the number of pages needed for pagination.""" return -(-len(df) // items_per_page) # Equivalent to math.ceil(len(df) / items_per_page) @st.cache_data def cached_model_info(_api, model): """Fetch model information from the Hugging Face API and cache the result.""" try: return _api.model_info(repo_id=str(model)) except (RepositoryNotFoundError, RevisionNotFoundError): return None @st.cache_data def get_model_info(df): """Get model information and update the DataFrame with likes and tags.""" api = HfApi() with st.spinner("Fetching model information..."): for index, row in df.iterrows(): model_info = cached_model_info(api, row['Model'].strip()) if model_info: df.loc[index, 'Likes'] = model_info.likes df.loc[index, 'Tags'] = ', '.join(model_info.tags) else: df.loc[index, 'Likes'] = -1 df.loc[index, 'Tags'] = '' return df def convert_markdown_table_to_dataframe(md_content): """Convert a markdown table to a pandas DataFrame.""" cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE) df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python') df = df.drop(0, axis=0) df.columns = df.columns.str.strip() model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)' df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None) df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x)) return df def create_bar_chart(df, category): """Create a horizontal bar chart for the specified category.""" st.write(f"### {category} Scores") sorted_df = df[['Model', category]].sort_values(by=category, ascending=True) fig = go.Figure(go.Bar( x=sorted_df[category], y=sorted_df['Model'], orientation='h', marker=dict(color=sorted_df[category], colorscale='Viridis'), hoverinfo='x+y', text=sorted_df[category], textposition='auto' )) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), title=f"Leaderboard for {category} Scores" ) st.plotly_chart(fig, use_container_width=True, height=len(df) * 35) def fetch_merge_configs(df): """Fetch and save merge configurations for the top models.""" df_sorted = df.sort_values(by='Average', ascending=False) try: with open('/tmp/configurations.txt', 'a') as file: for index, row in df_sorted.head(20).iterrows(): model_name = row['Model'].rstrip() try: card = ModelCard.load(model_name) file.write(f'Model Name: {model_name}\n') file.write(f'Scores: {row["Average"]}\n') file.write(f'AGIEval: {row["AGIEval"]}\n') file.write(f'GPT4All: {row["GPT4All"]}\n') file.write(f'TruthfulQA: {row["TruthfulQA"]}\n') file.write(f'Bigbench: {row["Bigbench"]}\n') file.write(f'Model Card: {card}\n') except Exception as e: st.error(f"Error loading model card for {model_name}: {str(e)}") with open('/tmp/configurations.txt', 'r') as file: content = file.read() matches = re.findall(r'yaml(.*?)```', content, re.DOTALL) with open('/tmp/configurations2.txt', 'w') as file: for row, match in zip(df_sorted[['Model', 'Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']].head(20).values, matches): file.write(f'Model Name: {row[0]}\n') file.write(f'Scores: {row[1]}\n') file.write(f'AGIEval: {row[2]}\n') file.write(f'GPT4All: {row[3]}\n') file.write(f'TruthfulQA: {row[4]}\n') file.write(f'Bigbench: {row[5]}\n') file.write('yaml' + match + '```\n') except Exception as e: st.error(f"Error while fetching merge configs: {str(e)}") def main(): """Main function to set up the Streamlit app and display the leaderboard.""" st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide") st.title("🏆 YALL - Yet Another LLM Leaderboard") st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.") content = create_yall() tab1, tab2 = st.tabs(["🏆 Leaderboard", "📝 About"]) with tab1: if content: try: score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench'] full_df = convert_markdown_table_to_dataframe(content) for col in score_columns: full_df[col] = pd.to_numeric(full_df[col].str.strip(), errors='coerce') full_df = get_model_info(full_df) full_df['Tags'] = full_df['Tags'].fillna('') df = pd.DataFrame(columns=full_df.columns) show_phi = st.checkbox("Phi (2.8B)", value=True) show_mistral = st.checkbox("Mistral (7B)", value=True) show_other = st.checkbox("Other", value=True) dfs_to_concat = [] if show_phi: dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('phi,|phi-msft,')]) if show_mistral: dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('mistral,')]) if show_other: other_df = full_df[~full_df['Tags'].str.lower().str.contains('phi,|phi-msft,|mistral,')] dfs_to_concat.append(other_df) if dfs_to_concat: df = pd.concat(dfs_to_concat, ignore_index=True) search_query = st.text_input("Search models", "") if search_query: df = df[df['Model'].str.contains(search_query, case=False)] items_per_page = 50 pages = calculate_pages(df, items_per_page) page = st.selectbox("Page", list(range(1, pages + 1))) df = df.sort_values(by='Average', ascending=False) start = (page - 1) * items_per_page end = start + items_per_page df = df[start:end] selected_benchmarks = st.multiselect('Select benchmarks to include in the average', score_columns, default=score_columns) if selected_benchmarks: df['Filtered Average'] = df[selected_benchmarks].mean(axis=1) df = df.sort_values(by='Filtered Average', ascending=False) st.dataframe( df[['Model'] + selected_benchmarks + ['Filtered Average', 'Likes', 'URL']], use_container_width=True, column_config={ "Likes": st.column_config.NumberColumn( "Likes", help="Number of likes on Hugging Face", format="%d ❤️", ), "URL": st.column_config.LinkColumn("URL"), }, hide_index=True, height=len(df) * 37, ) selected_models = st.multiselect('Select models to compare', df['Model'].unique()) comparison_df = df[df['Model'].isin(selected_models)] st.dataframe(comparison_df) if st.button("Export to CSV"): csv_data = df.to_csv(index=False) st.download_button( label="Download CSV", data=csv_data, file_name="leaderboard.csv", key="download-csv", help="Click to download the CSV file", ) if st.button("Fetch Merge-Configs"): fetch_merge_configs(full_df) st.success("Merge configurations have been fetched and saved.") create_bar_chart(df, 'Filtered Average') col1, col2 = st.columns(2) with col1: create_bar_chart(df, score_columns[1]) with col2: create_bar_chart(df, score_columns[2]) col3, col4 = st.columns(2) with col3: create_bar_chart(df, score_columns[3]) with col4: create_bar_chart(df, score_columns[4]) except Exception as e: st.error("An error occurred while processing the markdown table.") st.error(str(e)) else: st.error("Failed to download the content from the URL provided.") with tab2: st.markdown(''' ### Nous benchmark suite Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks: * [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math` * **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa` * [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc` * [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects` ### Reproducibility You can easily reproduce these results using 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf). ### Clone this space You can create your own leaderboard with your LLM AutoEval results on GitHub Gist. You just need to clone this space and specify two variables: * Change the `gist_id` in [yall.py](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard/blob/main/yall.py#L126). * Create "New Secret" in Settings > Variables and secrets (name: "github", value: [your GitHub token](https://github.com/settings/tokens)) A special thanks to [gblazex](https://huggingface.co/gblazex) for providing many evaluations. ''') if __name__ == "__main__": main()