Spaces:
Sleeping
Sleeping
import sklearn | |
import sqlite3 | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
import openai | |
import os | |
import gradio as gr | |
openai.api_key = os.environ["Secret"] | |
def find_closest_neighbors(vector1, dictionary_of_vectors): | |
""" | |
Takes a vector and a dictionary of vectors and returns the three closest neighbors | |
""" | |
vector = openai.Embedding.create( | |
input=vector1, | |
engine="text-embedding-ada-002" | |
)['data'][0]['embedding'] | |
vector = np.array(vector) | |
cosine_similarities = {} | |
for key, value in dictionary_of_vectors.items(): | |
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0] | |
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True) | |
match_list = sorted_cosine_similarities[0:4] | |
return match_list | |
def predict(message, history): | |
# Connect to the database | |
conn = sqlite3.connect('QRIdatabase7.db') | |
cursor = conn.cursor() | |
cursor.execute('''SELECT text, embedding FROM chunks''') | |
rows = cursor.fetchall() | |
dictionary_of_vectors = {} | |
for row in rows: | |
text = row[0] | |
embedding_str = row[1] | |
embedding = np.fromstring(embedding_str, sep=' ') | |
dictionary_of_vectors[text] = embedding | |
conn.close() | |
# Find the closest neighbors | |
match_list = find_closest_neighbors(message, dictionary_of_vectors) | |
context = '' | |
for match in match_list: | |
context += str(match[0]) | |
context = context[:-1500] | |
prep = f"This is an OpenAI model tuned to answer questions specific to the Qualia Research institute, a research institute that focuses on consciousness. Here is some question-specific context, and then the Question to answer, related to consciousness, the human experience, and phenomenology: {context}. Here is a question specific to QRI and consciousness in general Q: {message} A: " | |
history_openai_format = [] | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human }) | |
history_openai_format.append({"role": "assistant", "content":assistant}) | |
history_openai_format.append({"role": "user", "content": prep}) | |
response = openai.ChatCompletion.create( | |
model='gpt-3.5-turbo', | |
messages= history_openai_format, | |
temperature=1.0, | |
stream=True | |
) | |
partial_message = "" | |
for chunk in response: | |
if len(chunk['choices'][0]['delta']) != 0: | |
partial_message = partial_message + chunk['choices'][0]['delta']['content'] | |
yield partial_message | |
# Adjust the Gradio interface for a chatbot | |
76 + demo = gr.Interface( | |
77 + fn=predict, | |
78 + inputs=[ | |
79 + gr.Textbox(label="Message", placeholder="Enter your message"), | |
80 + gr.State(label="Conversation History") # State is used to manage history | |
81 + ], | |
82 + outputs=gr.Textbox(label="Response"), | |
83 + live=True | |
84 + ).queue() | |
if __name__ == "__main__": | |
demo.launch() | |