Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import sqlite3
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import openai
|
6 |
+
|
7 |
+
def find_closest_neighbors(vector1, dictionary_of_vectors):
|
8 |
+
"""
|
9 |
+
Takes a vector and a dictionary of vectors and returns the three closest neighbors
|
10 |
+
"""
|
11 |
+
|
12 |
+
# Convert the input string to a vector
|
13 |
+
vector = openai.Embedding.create(
|
14 |
+
input=vector1,
|
15 |
+
engine="text-embedding-ada-002"
|
16 |
+
)['data'][0]['embedding']
|
17 |
+
|
18 |
+
vector = np.array(vector)
|
19 |
+
|
20 |
+
# Finds cosine similarities between the vector and values in the dictionary and Creates a dictionary of cosine similarities with its text key
|
21 |
+
cosine_similarities = {}
|
22 |
+
for key, value in dictionary_of_vectors.items():
|
23 |
+
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
|
24 |
+
|
25 |
+
# Sorts the dictionary by value and returns the three highest values
|
26 |
+
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
|
27 |
+
match_list = sorted_cosine_similarities[0:4]
|
28 |
+
web = str(sorted_cosine_similarities[0][0])
|
29 |
+
return match_list
|
30 |
+
|
31 |
+
# Connect to the database
|
32 |
+
conn = sqlite3.connect('QRIdatabase.db')
|
33 |
+
|
34 |
+
# Create a cursor
|
35 |
+
cursor = conn.cursor()
|
36 |
+
|
37 |
+
# Select the text and embedding from the chunks table
|
38 |
+
cursor.execute('''SELECT text, embedding FROM chunks''')
|
39 |
+
|
40 |
+
# Fetch the rows
|
41 |
+
rows = cursor.fetchall()
|
42 |
+
|
43 |
+
# Create a dictionary to store the text and embedding for each row
|
44 |
+
dictionary_of_vectors = {}
|
45 |
+
|
46 |
+
# Iterate through the rows and add them to the dictionary
|
47 |
+
for row in rows:
|
48 |
+
text = row[0]
|
49 |
+
embedding_str = row[1]
|
50 |
+
# Convert the embedding string to a NumPy array
|
51 |
+
embedding = np.fromstring(embedding_str, sep=' ')
|
52 |
+
dictionary_of_vectors[text] = embedding
|
53 |
+
|
54 |
+
# Close the connection
|
55 |
+
conn.close()
|
56 |
+
|
57 |
+
def context_gpt_response(question):
|
58 |
+
"""
|
59 |
+
Takes a question and returns an answer
|
60 |
+
"""
|
61 |
+
|
62 |
+
# Find the closest neighbors
|
63 |
+
match_list = find_closest_neighbors(question, dictionary_of_vectors)
|
64 |
+
|
65 |
+
# Create a string of the text from the closest neighbors
|
66 |
+
context = ''
|
67 |
+
for match in match_list:
|
68 |
+
context += str(match[0])
|
69 |
+
|
70 |
+
# Generate an answer
|
71 |
+
response = openai.Completion.create(
|
72 |
+
engine="text-davinci-003",
|
73 |
+
prompt=context + question,
|
74 |
+
temperature=0.7,
|
75 |
+
max_tokens=150,
|
76 |
+
)
|
77 |
+
|
78 |
+
# Return the answer
|
79 |
+
return response['choices'][0]['text']
|
80 |
+
|
81 |
+
import gradio as gr
|
82 |
+
|
83 |
+
iface = gr.Interface(fn=context_gpt_response, inputs="text", outputs="text")
|
84 |
+
iface.launch()
|
85 |
+
|