Spaces:
Sleeping
Sleeping
File size: 2,683 Bytes
9f50973 007946f 9f50973 25f3cc2 9f50973 007946f 9f50973 007946f 9f50973 7f28337 9f50973 007946f 9f50973 7f28337 9f50973 7f28337 23a506b 7f28337 9f50973 7f28337 9f50973 7f28337 9f50973 7f28337 9f50973 7f28337 9f50973 7f28337 8f3da7e 7f28337 9f50973 7f28337 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import sklearn
import sqlite3
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import openai
import os
import gradio as gr
openai.api_key = os.environ["Secret"]
def find_closest_neighbors(vector1, dictionary_of_vectors):
"""
Takes a vector and a dictionary of vectors and returns the three closest neighbors
"""
vector = openai.Embedding.create(
input=vector1,
engine="text-embedding-ada-002"
)['data'][0]['embedding']
vector = np.array(vector)
cosine_similarities = {}
for key, value in dictionary_of_vectors.items():
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
match_list = sorted_cosine_similarities[0:4]
return match_list
def predict(message, history):
# Connect to the database
conn = sqlite3.connect('QRIdatabase7 (2).db')
cursor = conn.cursor()
cursor.execute('''SELECT text, embedding FROM chunks''')
rows = cursor.fetchall()
dictionary_of_vectors = {}
for row in rows:
text = row[0]
embedding_str = row[1]
embedding = np.fromstring(embedding_str, sep=' ')
dictionary_of_vectors[text] = embedding
conn.close()
# Find the closest neighbors
match_list = find_closest_neighbors(message, dictionary_of_vectors)
context = ''
for match in match_list:
context += str(match[0])
context = context[:-1500]
prep = f"This is an OpenAI model tuned to answer questions specific to the Qualia Research institute, a research institute that focuses on consciousness. Here is some question-specific context, and then the Question to answer, related to consciousness, the human experience, and phenomenology: {context}. Here is a question specific to QRI and consciousness in general Q: {message} A: "
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": prep})
response = openai.ChatCompletion.create(
model='gpt-4',
messages= history_openai_format,
temperature=1.0,
stream=True
)
partial_message = ""
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
partial_message = partial_message + chunk['choices'][0]['delta']['content']
yield partial_message
gr.ChatInterface(predict).queue().launch()
|