Spaces:
Running
Running
import os | |
import random | |
import uuid | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import spaces | |
import torch | |
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, StableDiffusion3Img2ImgPipeline | |
from transformers import T5EncoderModel, BitsAndBytesConfig | |
from huggingface_hub import login | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
login(token=huggingface_token) | |
DESCRIPTION = """# Stable Diffusion 3""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = False | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) | |
USE_TORCH_COMPILE = False | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def load_pipeline(): | |
model_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
pipe = StableDiffusion3Pipeline.from_pretrained( | |
model_id, | |
#device_map="balanced", | |
torch_dtype=torch.float16 | |
) | |
return pipe | |
aspect_ratios = { | |
"21:9": (21, 9), | |
"2:1": (2, 1), | |
"16:9": (16, 9), | |
"5:4": (5, 4), | |
"4:3": (4, 3), | |
"3:2": (3, 2), | |
"1:1": (1, 1), | |
} | |
# Function to calculate resolution | |
def calculate_resolution(aspect_ratio, mode='landscape', total_pixels=1024*1024, divisibility=64): | |
if aspect_ratio not in aspect_ratios: | |
raise ValueError(f"Invalid aspect ratio: {aspect_ratio}") | |
width_multiplier, height_multiplier = aspect_ratios[aspect_ratio] | |
ratio = width_multiplier / height_multiplier | |
if mode == 'portrait': | |
# Swap the ratio for portrait mode | |
ratio = 1 / ratio | |
height = int((total_pixels / ratio) ** 0.5) | |
height -= height % divisibility | |
width = int(height * ratio) | |
width -= width % divisibility | |
while width * height > total_pixels: | |
height -= divisibility | |
width = int(height * ratio) | |
width -= width % divisibility | |
return width, height | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt:str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
seed: int = 0, | |
aspect: str = "1:1", | |
mode: str = "landscape", | |
guidance_scale: float = 7.5, | |
randomize_seed: bool = False, | |
num_inference_steps=30, | |
NUM_IMAGES_PER_PROMPT=1, | |
use_resolution_binning: bool = True, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
pipe = load_pipeline() | |
pipe.to(device) | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
width, height = calculate_resolution(aspect, mode) | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
output_type="pil", | |
).images | |
return output | |
examples = [ | |
"Beautiful pixel art of a wizard with hovering text \"Achievement unlocked: Diffusion models can spell now\"", | |
"Frog sitting in a 1950s diner wearing a leather jacket and a top hat. on the table a giant burger and a small sign that says \"froggy fridays\"", | |
"This dreamlike digital art capture a vibrant kaleidoscopic bird in a rainforest", | |
"pair of shoes made of dried fruit skins, 3d render, bright colours, clean composition, beautiful artwork, logo saying \"SD3 rocks!\"", | |
"post-apocalyptic city wasteland, the most delicate beautiful flower with green leaves growing from dust and rubble, vibrant colours, cinematic", | |
"a dark-armored warrior with ornate golden details, cloaked in a flowing black cape, wielding a radiant, fiery sword, standing amidst an ominous cloudy backdrop with dramatic lighting, exuding a menacing, powerful presence.", | |
"A wise old wizard with a long white beard, flowing robes, and a gnarled staff, casting a spell, photorealistic style", | |
"Design a film poster for a noir thriller set in 1940s Los Angeles, featuring a shadowy figure under a streetlamp and a foggy, mysterious ambiance.", | |
] | |
css = ''' | |
.gradio-container{max-width: 1000px !important} | |
h1{text-align:center} | |
''' | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Stable Diffusion 3 | |
</h1> | |
""" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Row(): | |
aspect = gr.Dropdown(label='Aspect Ratio', choices=list(aspect_ratios.keys()), value='1:1', interactive=True) | |
mode = gr.Dropdown(label='Mode', choices=['landscape', 'portrait'], value='landscape') | |
result = gr.Gallery(label="Result", elem_id="gallery", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=30, | |
) | |
number_image = gr.Slider( | |
label="Number of Images", | |
minimum=1, | |
maximum=2, | |
step=1, | |
value=1, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=10, | |
step=0.1, | |
value=7.0, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result], | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
seed, | |
aspect, | |
mode, | |
guidance_scale, | |
randomize_seed, | |
steps, | |
number_image, | |
], | |
outputs=[result], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |