Spaces:
Build error
Build error
File size: 24,453 Bytes
6250360 b49c894 6250360 f9c5433 6250360 d2fc4b7 6250360 682a278 6250360 e1a24d1 6250360 e1a24d1 6250360 796c05d 0fdb9e6 e7d36e8 0fdb9e6 6250360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
import os
import cv2
import torch
from torchvision import transforms as T
import torch.nn as nn
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.utils.chars import getstr_grid, get_tight_rect
from maskrcnn_benchmark.data.datasets.evaluation.word.alfashape import getAlfaShapes
from maskrcnn_benchmark.modeling.roi_heads.boundary_head.inference import Masker
from shapely.geometry import *
import random
from torchvision.transforms import functional as F
from PIL import Image
import numpy as np
import argparse
class Resize(object):
def __init__(self, min_size, max_size):
if not isinstance(min_size, (list, tuple)):
min_size = (min_size,)
self.min_size = min_size
self.max_size = max_size
# modified from torchvision to add support for max size
def get_size(self, image_size):
w, h = image_size
size = random.choice(self.min_size)
max_size = self.max_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def __call__(self, image):
size = self.get_size(image.size)
image = F.resize(image, size)
return image
class DetDemo(object):
def __init__(
self,
cfg,
confidence_threshold=0.7,
min_image_size=(1200,2000),
output_polygon=True
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=cfg.OUTPUT_DIR)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.output_polygon = output_polygon
def build_transform(self):
"""
Creates a basic transformation that was used to train the models
"""
cfg = self.cfg
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
min_size = cfg.INPUT.MIN_SIZE_TEST
max_size = cfg.INPUT.MAX_SIZE_TEST
transform = T.Compose(
[
T.ToPILImage(),
Resize(min_size, max_size),
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
def run_on_opencv_image(self, image):
"""
Arguments:
image (np.ndarray): an image as returned by OpenCV
Returns:
result_polygons (list): detection results
result_words (list): recognition results
"""
result_polygons = self.compute_prediction(image)
return result_polygons
def contour_to_valid(self, cnt, image_shape):
"""Convert rect to xys, i.e., eight points
The `image_shape` is used to to make sure all points return are valid, i.e., within image area
"""
# rect = cv2.minAreaRect(cnt)
if len(cnt.shape) != 3:
assert 1 < 0
rect = cnt.reshape([cnt.shape[0], cnt.shape[2]])
h, w = image_shape[0:2]
def get_valid_x(x):
if x < 0:
return 0
if x >= w:
return w - 1
return x
def get_valid_y(y):
if y < 0:
return 0
if y >= h:
return h - 1
return y
for i_xy, (x, y) in enumerate(rect):
x = get_valid_x(x)
y = get_valid_y(y)
rect[i_xy, :] = [x, y]
points = np.reshape(rect, -1)
return points
def _nms_y(self, heat, kernel=3):
pad = (kernel - 1) // 2
hmax = nn.functional.max_pool2d(
heat, (1, kernel), stride=1, padding=(0, pad))
keep = (hmax == heat).float()
return heat * keep
def _nms_x(self, heat, kernel=3):
pad = (kernel - 1) // 2
hmax = nn.functional.max_pool2d(
heat, (kernel, 1), stride=1, padding=(pad, 0))
keep = (hmax == heat).float()
return heat * keep
def CTW_order_lr(self, map_in):
line_out_l2r = []
line_out_r2l = []
map_in = torch.tensor(map_in)
value, top = torch.topk(map_in, 2, dim=0)
value = value.numpy()
top = top.numpy()
top_th = np.where(value[1] > 0.1)[0] # L
# print(top_th)
if len(top_th) == 0:
return []
top1 = np.sort(top, axis=0)
for i in range(len(top_th)):
line_out_l2r.append([top_th[i], top1[0][top_th[i]]])
line_out_r2l.append([top_th[i], top1[1][top_th[i]]])
line_out = line_out_l2r+line_out_r2l[::-1]
# print(line_out)
return line_out
def CTW_order_bt(self, map_in):
line_out_t2b = []
line_out_b2t = []
map_in = torch.tensor(map_in)
value, top = torch.topk(map_in, 2, dim=1)
value = value.numpy()
top = top.numpy()
top_th = np.where(value[:, 1] > 0.1)[0] # H
if len(top_th) == 0:
return []
top1 = np.sort(top, axis=1)
for i in range(len(top_th)):
line_out_b2t.append([top1[top_th[i]][0], top_th[i]])
line_out_t2b.append([top1[top_th[i]][1], top_th[i]])
line_out = line_out_b2t[::-1] + line_out_t2b
# print(line_out)
return line_out
def boundary_to_mask_ic(self, bo_x, bo_y):
# NMS Hmap and Vmap
Vmap = self._nms_x(bo_x, kernel=5)
Hmap = self._nms_y(bo_y, kernel=3)
Vmap = Vmap[0]
Hmap = Hmap[0]
ploys_Alfa_x = Vmap.clone().numpy()
ploys_Alfa_y = Hmap.clone().numpy()
# Threshold Hmap and Vmap
thresh = 0.5
ploys_Alfa_x[ploys_Alfa_x < thresh] = 0
ploys_Alfa_x[ploys_Alfa_x >= thresh] = 1
ploys_Alfa_y[ploys_Alfa_y < thresh] = 0
ploys_Alfa_y[ploys_Alfa_y >= thresh] = 1
# Output points with strong texture inforamtion in both maps
ploys_Alfa = ploys_Alfa_x + ploys_Alfa_y
ploys_Alfa[ploys_Alfa < 2] = 0
ploys_Alfa[ploys_Alfa == 2] = 1
img_draw = np.zeros([ploys_Alfa_y.shape[-1], ploys_Alfa_y.shape[-1]], dtype=np.uint8)
# calculate polygon by Alpha-Shape Algorithm
if ploys_Alfa.sum() == 0:
return img_draw
ploys_Alfa_inds = np.argwhere(ploys_Alfa == 1)
zero_detect_x = ploys_Alfa_inds[:, 0] - ploys_Alfa_inds[0, 0]
zero_detect_y = ploys_Alfa_inds[:, 1] - ploys_Alfa_inds[0, 1]
if np.where(zero_detect_x != 0)[0].shape[0] == 0 or np.where(zero_detect_y != 0)[0].shape[0] == 0 or \
ploys_Alfa_inds.shape[0] < 4:
draw_line = ploys_Alfa_inds[np.newaxis, np.newaxis, :, :]
cv2.fillPoly(img_draw, draw_line, 1)
return img_draw
ploys_Alfa_inds = ploys_Alfa_inds.tolist()
ploys_Alfa_inds = [tuple(ploys_Alfa_ind) for ploys_Alfa_ind in ploys_Alfa_inds]
lines = getAlfaShapes(ploys_Alfa_inds, alfas=[1])
draw_line = np.array(lines)
if len(draw_line.shape) == 4:
if draw_line.shape[1] == 1:
draw_line[0, 0, :, :] = draw_line[0, 0, :, ::-1]
cv2.fillPoly(img_draw, draw_line, 1)
else:
i_draw = 0
for draw_l in draw_line[0]:
img_draw_new = np.zeros([28, 28], dtype=np.uint8)
draw_l = draw_l[np.newaxis, np.newaxis, :, :]
cv2.fillPoly(img_draw, np.int32(draw_l), 1)
cv2.fillPoly(img_draw_new, np.int32(draw_l), 1)
i_draw += 1
else:
for i, line in enumerate(lines[0]):
draw_line = np.array(line)
draw_line = draw_line[np.newaxis, np.newaxis, :, :]
draw_line[0, 0, :, :] = draw_line[0, 0, :, ::-1]
cv2.fillPoly(img_draw, draw_line, 1)
return img_draw
def boundary_to_mask_ctw(self, bo_x, bo_y, p_temp_box):
w_half = (p_temp_box[2] - p_temp_box[0]) * .5
h_half = (p_temp_box[3] - p_temp_box[1]) * .5
thresh_total = 0.5
if w_half >= h_half:
# point re-scoring
bo_x = self._nms_x(bo_x, kernel=9)
bo_x = bo_x[0]
bo_y = bo_y[0]
ploys_Alfa_x = bo_x.clone().numpy()
ploys_Alfa_y = bo_y.clone().numpy()
thresh_x = thresh_total
thresh_y = thresh_total
ploys_Alfa_x_1 = bo_x.clone().numpy()
ploys_Alfa_y_1 = bo_y.clone().numpy()
ploys_Alfa__1 = ploys_Alfa_x_1 + ploys_Alfa_y_1
ploys_Alfa_x[ploys_Alfa_x < thresh_x] = 0
ploys_Alfa_x[ploys_Alfa_x >= thresh_x] = 1
ploys_Alfa_y[ploys_Alfa_y < thresh_y] = 0
ploys_Alfa_y[ploys_Alfa_y >= thresh_y] = 1
ploys_Alfa = ploys_Alfa_x + ploys_Alfa_y
ploys_Alfa[ploys_Alfa < 2] = 0
ploys_Alfa[ploys_Alfa == 2] = 1
ploys_Alfa *= ploys_Alfa__1
# rebuild text region from contour points
img_draw = np.zeros([ploys_Alfa_y.shape[-1], ploys_Alfa_y.shape[-1]], dtype=np.uint8)
if ploys_Alfa.sum() == 0:
return img_draw
lines = self.CTW_order_lr(ploys_Alfa)
else:
bo_y = self._nms_y(bo_y,kernel=9)
bo_x = bo_x[0]
bo_y = bo_y[0]
ploys_Alfa_x = bo_x.clone().numpy()
ploys_Alfa_y = bo_y.clone().numpy()
thresh_x = thresh_total
thresh_y = thresh_total
ploys_Alfa_x_1 = bo_x.clone().numpy()
ploys_Alfa_y_1 = bo_y.clone().numpy()
ploys_Alfa__1 = ploys_Alfa_x_1 + ploys_Alfa_y_1
ploys_Alfa_x[ploys_Alfa_x < thresh_x] = 0
ploys_Alfa_x[ploys_Alfa_x >= thresh_x] = 1
ploys_Alfa_y[ploys_Alfa_y < thresh_y] = 0
ploys_Alfa_y[ploys_Alfa_y >= thresh_y] = 1
ploys_Alfa = ploys_Alfa_x + ploys_Alfa_y
ploys_Alfa[ploys_Alfa < 2] = 0
ploys_Alfa[ploys_Alfa == 2] = 1
ploys_Alfa *= ploys_Alfa__1
img_draw = np.zeros([ploys_Alfa_y.shape[-1], ploys_Alfa_y.shape[-1]], dtype=np.uint8)
if ploys_Alfa.sum() == 0:
return img_draw
lines = self.CTW_order_bt(ploys_Alfa)
if len(lines) <=10:
return img_draw
draw_line = np.array(lines)
draw_line = draw_line[np.newaxis, np.newaxis, :, :]
cv2.fillPoly(img_draw, draw_line, 1)
img_draw = img_draw.astype(np.uint8)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
img_draw = cv2.morphologyEx(img_draw, cv2.MORPH_CLOSE, kernel)
return img_draw
def contour_to_xys(self, cnt, image_shape):
"""Convert rect to xys, i.e., eight points
The `image_shape` is used to to make sure all points return are valid, i.e., within image area
"""
rect = cv2.minAreaRect(cnt)
h, w = image_shape[0:2]
def get_valid_x(x):
if x < 0:
return 0
if x >= w:
return w - 1
return x
def get_valid_y(y):
if y < 0:
return 0
if y >= h:
return h - 1
return y
points = cv2.boxPoints(rect)
points = np.int0(points)
for i_xy, (x, y) in enumerate(points):
x = get_valid_x(x)
y = get_valid_y(y)
points[i_xy, :] = [x, y]
points = np.reshape(points, -1)
return points
def mask_to_roRect(self, mask, img_shape):
## convert mask into rotated rect
e = mask[0, :, :]
_, countours, hier = cv2.findContours(e.clone().numpy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) # Aarlog
if len(countours) == 0:
return np.zeros((1, 8))
t_c = countours[0].copy()
quad = self.contour_to_xys(t_c, img_shape)
return quad
def mask_to_contours(self, mask, img_shape):
e = mask[0, :, :]
countours, hier = cv2.findContours(e.clone().numpy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) # Aarlog
if len(countours) == 0:
return np.zeros((1, 8))
t_c = countours[0].copy()
quad = self.contour_to_valid(t_c, img_shape)
return quad
def py_cpu_pnms(self, dets, scores, thresh):
pts = []
for det in dets:
pts.append([[det[i][0], det[i][1]] for i in range(len(det))])
order = scores.argsort()[::-1]
areas = np.zeros(scores.shape)
order = scores.argsort()[::-1]
inter_areas = np.zeros((scores.shape[0], scores.shape[0]))
for il in range(len(pts)):
poly = Polygon(pts[il])
areas[il] = poly.area
for jl in range(il, len(pts)):
polyj = Polygon(pts[jl])
try:
inS = poly.intersection(polyj)
except:
print(poly, polyj)
inter_areas[il][jl] = inS.area
inter_areas[jl][il] = inS.area
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = inter_areas[i][order[1:]] / (areas[i] + areas[order[1:]] - inter_areas[i][order[1:]])
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def esd_pnms(self, esd, pnms_thresh):
scores = []
dets = []
for ele in esd:
score = ele['score']
quad = ele['seg_rorect']
# det = np.array([[quad[0][0], quad[0][1]], [quad[1][0], quad[1][1]],[quad[2][0], quad[2][1]],[quad[3][0], quad[3][1]]])
det = np.array([[quad[0], quad[1]], [quad[2], quad[3]], [quad[4], quad[5]], [quad[6], quad[7]]])
scores.append(score)
dets.append(det)
scores = np.array(scores)
dets = np.array(dets)
keep = self.py_cpu_pnms(dets, scores, pnms_thresh)
return keep
def compute_prediction(self, original_image):
# apply pre-processing to image
image = self.transforms(original_image)
# convert to an ImageList, padded so that it is divisible by
# cfg.DATALOADER.SIZE_DIVISIBILITY
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
image_list = image_list.to(self.device)
# compute predictions
with torch.no_grad():
output = self.model(image_list)
prediction = [o.to(self.cpu_device) for o in output][0]
#global_predictions = predictions[0]
#char_predictions = predictions[1]
#char_mask = char_predictions['char_mask']
#char_boxes = char_predictions['boxes']
#words, rec_scores = self.process_char_mask(char_mask, char_boxes)
#seq_words = char_predictions['seq_outputs']
#seq_scores = char_predictions['seq_scores']
# reshape prediction (a BoxList) into the original image size
image_height, image_width = original_image.shape[:-1]
prediction = prediction.resize((image_width, image_height))
if len(prediction) == 0:
return
prediction = prediction.convert("xyxy")
boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
masks_x = prediction.get_field("mask_x")
masks_y = prediction.get_field("mask_y")
#masks = [self.boundary_to_mask_ic(mask_x, mask_y) for
# mask_x, mask_y in zip(masks_x, masks_y)]
masks = [self.boundary_to_mask_ctw(mask_x, mask_y, p_temp) for
mask_x, mask_y, p_temp in zip(masks_x, masks_y, prediction.bbox)]
masks = torch.from_numpy(np.array(masks)[:, np.newaxis, :, :])
# Masker is necessary only if masks haven't been already resized.
masker = Masker(threshold=0.5, padding=1)
if list(masks.shape[-2:]) != [image_height, image_width]:
masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
masks = masks[0]
'''
rects = [self.mask_to_roRect(mask, [image_height, image_width]) for mask in masks]
esd = []
for k, rect in enumerate(rects):
if rect.all() == 0:
continue
else:
esd.append(
{
"seg_rorect": rect.tolist(),
"score": scores[k],
}
)
if cfg.PROCESS.PNMS:
pnms_thresh = cfg.PROCESS.NMS_THRESH
keep = self.esd_pnms(esd, pnms_thresh)
im_write = cv2.imread('./demo/1.jpg')[:, :, ::-1]
for i in keep:
box = esd[i]
# print(box)
# assert 1<0
box = np.array(box['seg_rorect'])
box = np.around(box).astype(np.int32)
cv2.polylines(im_write[:, :, ::-1], [box.astype(np.int32).reshape((-1, 1, 2))], True,
color=(0, 255, 0), thickness=2) # 0,255,255 y 0,255,0 g
cv2.imwrite('./demo/example_results.jpg', im_write[:, :, ::-1])
'''
contours = [self.mask_to_contours(mask, [image_height, image_width]) for mask in masks]
'''
im_write = original_image[:, :, ::-1]
for box in contours:
box = np.array(box)
box = np.around(box).astype(np.int32)
cv2.polylines(im_write[:, :, ::-1], [box.astype(np.int32).reshape((-1, 1, 2))], True, color=(0, 255, 0), thickness=2) # 0,255,255 y 0,255,0 g
cv2.imwrite('./demo/example_results.jpg', im_write[:, :, ::-1])
'''
return contours, np.array(masks.repeat(1,3,1,1)).astype(np.bool_).transpose(0,2,3,1), np.array(boxes).astype(int)
def process_char_mask(self, char_masks, boxes, threshold=192):
texts, rec_scores = [], []
for index in range(char_masks.shape[0]):
box = list(boxes[index])
box = list(map(int, box))
text, rec_score, _, _ = getstr_grid(char_masks[index,:,:,:].copy(), box, threshold=threshold)
texts.append(text)
rec_scores.append(rec_score)
return texts, rec_scores
def mask2polygon(self, mask, box, im_size, threshold=0.5, output_polygon=True):
# mask 32*128
image_width, image_height = im_size[1], im_size[0]
box_h = box[3] - box[1]
box_w = box[2] - box[0]
cls_polys = (mask*255).astype(np.uint8)
poly_map = np.array(Image.fromarray(cls_polys).resize((box_w, box_h)))
poly_map = poly_map.astype(np.float32) / 255
poly_map=cv2.GaussianBlur(poly_map,(3,3),sigmaX=3)
ret, poly_map = cv2.threshold(poly_map,0.5,1,cv2.THRESH_BINARY)
if output_polygon:
SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
poly_map = cv2.erode(poly_map,SE1)
poly_map = cv2.dilate(poly_map,SE1);
poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
try:
_, contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
except:
contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
if len(contours)==0:
print(contours)
print(len(contours))
return None
max_area=0
max_cnt = contours[0]
for cnt in contours:
area=cv2.contourArea(cnt)
if area > max_area:
max_area = area
max_cnt = cnt
perimeter = cv2.arcLength(max_cnt,True)
epsilon = 0.01*cv2.arcLength(max_cnt,True)
approx = cv2.approxPolyDP(max_cnt,epsilon,True)
pts = approx.reshape((-1,2))
pts[:,0] = pts[:,0] + box[0]
pts[:,1] = pts[:,1] + box[1]
polygon = list(pts.reshape((-1,)))
polygon = list(map(int, polygon))
if len(polygon)<6:
return None
else:
SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
poly_map = cv2.erode(poly_map,SE1)
poly_map = cv2.dilate(poly_map,SE1);
poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
idy,idx=np.where(poly_map == 1)
xy=np.vstack((idx,idy))
xy=np.transpose(xy)
hull = cv2.convexHull(xy, clockwise=True)
#reverse order of points.
if hull is None:
return None
hull=hull[::-1]
#find minimum area bounding box.
rect = cv2.minAreaRect(hull)
corners = cv2.boxPoints(rect)
corners = np.array(corners, dtype="int")
pts = get_tight_rect(corners, box[0], box[1], image_height, image_width, 1)
polygon = [x * 1.0 for x in pts]
polygon = list(map(int, polygon))
return polygon
def visualization(self, image, polygons, masks, boxes, words):
green = np.ones(image.shape).astype(np.uint8)
green[...,0] = 0
green[...,1] = 255
green[...,2] = 0
for mask, word, box in zip(masks, words, boxes):
image[mask] = image[mask] * 0.5 + green[mask] * 0.5
cv2.putText(image, word, (box[0], box[1]), cv2.FONT_HERSHEY_COMPLEX, 0.4, (0,0,255), 1)
'''
for box in boxes:
cv2.rectangle(image,(box[0], box[1]), (box[2], box[3]), (0,0,255), 2)
'''
'''
for polygon in polygons:
pts = np.array(polygon, np.int32)
pts = pts.reshape((-1,1,2))
xmin = min(pts[:,0,0])
ymin = min(pts[:,0,1])
cv2.polylines(image,[pts],True,(0,0,255))
#cv2.putText(image, word, (xmin, ymin), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
'''
return image
def main(args):
# update the config options with the config file
cfg.merge_from_file(args.config_file)
# manual override some options
# cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
text_demo = TextDemo(
cfg,
min_image_size=(1200,2000),
confidence_threshold=0.85,
output_polygon=True
)
# load image and then run prediction
image = cv2.imread(args.image_path)
result_polygons, result_masks = text_demo.run_on_opencv_image(image)
image = text_demo.visualization(image, result_polygons, result_masks)
cv2.imwrite(args.visu_path, image)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='parameters for demo')
parser.add_argument("--config-file", type=str, default='./configs/ctw/r50_baseline.yaml')
parser.add_argument("--image_path", type=str, default='./det_visual/1223.jpg')
parser.add_argument("--visu_path", type=str, default='./demo/example_results.jpg')
args = parser.parse_args()
main(args)
|