Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
from fastai.vision import * | |
from .model_vision import BaseVision | |
from .model_language import BCNLanguage | |
from .model_alignment import BaseAlignment | |
class ABINetIterModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.iter_size = ifnone(config.model_iter_size, 1) | |
self.max_length = config.dataset_max_length + 1 # additional stop token | |
self.vision = BaseVision(config) | |
self.language = BCNLanguage(config) | |
self.alignment = BaseAlignment(config) | |
def forward(self, images, *args): | |
v_res = self.vision(images) | |
a_res = v_res | |
all_l_res, all_a_res = [], [] | |
for _ in range(self.iter_size): | |
tokens = torch.softmax(a_res['logits'], dim=-1) | |
lengths = a_res['pt_lengths'] | |
lengths.clamp_(2, self.max_length) # TODO:move to langauge model | |
l_res = self.language(tokens, lengths) | |
all_l_res.append(l_res) | |
a_res = self.alignment(l_res['feature'], v_res['feature']) | |
all_a_res.append(a_res) | |
if self.training: | |
return all_a_res, all_l_res, v_res | |
else: | |
return a_res, all_l_res[-1], v_res | |