File size: 16,721 Bytes
220c28f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import logging
import shutil
import time
import editdistance as ed
import torchvision.utils as vutils
from fastai.callbacks.tensorboard import (LearnerTensorboardWriter,
SummaryWriter, TBWriteRequest,
asyncTBWriter)
from fastai.vision import *
from torch.nn.parallel import DistributedDataParallel
from torchvision import transforms
import dataset
from utils import CharsetMapper, Timer, blend_mask
class IterationCallback(LearnerTensorboardWriter):
"A `TrackerCallback` that monitor in each iteration."
def __init__(self, learn:Learner, name:str='model', checpoint_keep_num=5,
show_iters:int=50, eval_iters:int=1000, save_iters:int=20000,
start_iters:int=0, stats_iters=20000):
#if self.learn.rank is not None: time.sleep(self.learn.rank) # keep all event files
super().__init__(learn, base_dir='.', name=learn.path, loss_iters=show_iters,
stats_iters=stats_iters, hist_iters=stats_iters)
self.name, self.bestname = Path(name).name, f'best-{Path(name).name}'
self.show_iters = show_iters
self.eval_iters = eval_iters
self.save_iters = save_iters
self.start_iters = start_iters
self.checpoint_keep_num = checpoint_keep_num
self.metrics_root = 'metrics/' # rewrite
self.timer = Timer()
self.host = self.learn.rank is None or self.learn.rank == 0
def _write_metrics(self, iteration:int, names:List[str], last_metrics:MetricsList)->None:
"Writes training metrics to Tensorboard."
for i, name in enumerate(names):
if last_metrics is None or len(last_metrics) < i+1: return
scalar_value = last_metrics[i]
self._write_scalar(name=name, scalar_value=scalar_value, iteration=iteration)
def _write_sub_loss(self, iteration:int, last_losses:dict)->None:
"Writes sub loss to Tensorboard."
for name, loss in last_losses.items():
scalar_value = to_np(loss)
tag = self.metrics_root + name
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
def _save(self, name):
if isinstance(self.learn.model, DistributedDataParallel):
tmp = self.learn.model
self.learn.model = self.learn.model.module
self.learn.save(name)
self.learn.model = tmp
else: self.learn.save(name)
def _validate(self, dl=None, callbacks=None, metrics=None, keeped_items=False):
"Validate on `dl` with potential `callbacks` and `metrics`."
dl = ifnone(dl, self.learn.data.valid_dl)
metrics = ifnone(metrics, self.learn.metrics)
cb_handler = CallbackHandler(ifnone(callbacks, []), metrics)
cb_handler.on_train_begin(1, None, metrics); cb_handler.on_epoch_begin()
if keeped_items: cb_handler.state_dict.update(dict(keeped_items=[]))
val_metrics = validate(self.learn.model, dl, self.loss_func, cb_handler)
cb_handler.on_epoch_end(val_metrics)
if keeped_items: return cb_handler.state_dict['keeped_items']
else: return cb_handler.state_dict['last_metrics']
def jump_to_epoch_iter(self, epoch:int, iteration:int)->None:
try:
self.learn.load(f'{self.name}_{epoch}_{iteration}', purge=False)
logging.info(f'Loaded {self.name}_{epoch}_{iteration}')
except: logging.info(f'Model {self.name}_{epoch}_{iteration} not found.')
def on_train_begin(self, n_epochs, **kwargs):
# TODO: can not write graph here
# super().on_train_begin(**kwargs)
self.best = -float('inf')
self.timer.tic()
if self.host:
checkpoint_path = self.learn.path/'checkpoint.yaml'
if checkpoint_path.exists():
os.remove(checkpoint_path)
open(checkpoint_path, 'w').close()
return {'skip_validate': True, 'iteration':self.start_iters} # disable default validate
def on_batch_begin(self, **kwargs:Any)->None:
self.timer.toc_data()
super().on_batch_begin(**kwargs)
def on_batch_end(self, iteration, epoch, last_loss, smooth_loss, train, **kwargs):
super().on_batch_end(last_loss, iteration, train, **kwargs)
if iteration == 0: return
if iteration % self.loss_iters == 0:
last_losses = self.learn.loss_func.last_losses
self._write_sub_loss(iteration=iteration, last_losses=last_losses)
self.tbwriter.add_scalar(tag=self.metrics_root + 'lr',
scalar_value=self.opt.lr, global_step=iteration)
if iteration % self.show_iters == 0:
log_str = f'epoch {epoch} iter {iteration}: loss = {last_loss:6.4f}, ' \
f'smooth loss = {smooth_loss:6.4f}'
logging.info(log_str)
# log_str = f'data time = {self.timer.data_diff:.4f}s, runing time = {self.timer.running_diff:.4f}s'
# logging.info(log_str)
if iteration % self.eval_iters == 0:
# TODO: or remove time to on_epoch_end
# 1. Record time
log_str = f'average data time = {self.timer.average_data_time():.4f}s, ' \
f'average running time = {self.timer.average_running_time():.4f}s'
logging.info(log_str)
# 2. Call validate
last_metrics = self._validate()
self.learn.model.train()
log_str = f'epoch {epoch} iter {iteration}: eval loss = {last_metrics[0]:6.4f}, ' \
f'ccr = {last_metrics[1]:6.4f}, cwr = {last_metrics[2]:6.4f}, ' \
f'ted = {last_metrics[3]:6.4f}, ned = {last_metrics[4]:6.4f}, ' \
f'ted/w = {last_metrics[5]:6.4f}, '
logging.info(log_str)
names = ['eval_loss', 'ccr', 'cwr', 'ted', 'ned', 'ted/w']
self._write_metrics(iteration, names, last_metrics)
# 3. Save best model
current = last_metrics[2]
if current is not None and current > self.best:
logging.info(f'Better model found at epoch {epoch}, '\
f'iter {iteration} with accuracy value: {current:6.4f}.')
self.best = current
self._save(f'{self.bestname}')
if iteration % self.save_iters == 0 and self.host:
logging.info(f'Save model {self.name}_{epoch}_{iteration}')
filename = f'{self.name}_{epoch}_{iteration}'
self._save(filename)
checkpoint_path = self.learn.path/'checkpoint.yaml'
if not checkpoint_path.exists():
open(checkpoint_path, 'w').close()
with open(checkpoint_path, 'r') as file:
checkpoints = yaml.load(file, Loader=yaml.FullLoader) or dict()
checkpoints['all_checkpoints'] = (
checkpoints.get('all_checkpoints') or list())
checkpoints['all_checkpoints'].insert(0, filename)
if len(checkpoints['all_checkpoints']) > self.checpoint_keep_num:
removed_checkpoint = checkpoints['all_checkpoints'].pop()
removed_checkpoint = self.learn.path/self.learn.model_dir/f'{removed_checkpoint}.pth'
os.remove(removed_checkpoint)
checkpoints['current_checkpoint'] = filename
with open(checkpoint_path, 'w') as file:
yaml.dump(checkpoints, file)
self.timer.toc_running()
def on_train_end(self, **kwargs):
#self.learn.load(f'{self.bestname}', purge=False)
pass
def on_epoch_end(self, last_metrics:MetricsList, iteration:int, **kwargs)->None:
self._write_embedding(iteration=iteration)
class TextAccuracy(Callback):
_names = ['ccr', 'cwr', 'ted', 'ned', 'ted/w']
def __init__(self, charset_path, max_length, case_sensitive, model_eval):
self.charset_path = charset_path
self.max_length = max_length
self.case_sensitive = case_sensitive
self.charset = CharsetMapper(charset_path, self.max_length)
self.names = self._names
self.model_eval = model_eval or 'alignment'
assert self.model_eval in ['vision', 'language', 'alignment']
def on_epoch_begin(self, **kwargs):
self.total_num_char = 0.
self.total_num_word = 0.
self.correct_num_char = 0.
self.correct_num_word = 0.
self.total_ed = 0.
self.total_ned = 0.
def _get_output(self, last_output):
if isinstance(last_output, (tuple, list)):
for res in last_output:
if res['name'] == self.model_eval: output = res
else: output = last_output
return output
def _update_output(self, last_output, items):
if isinstance(last_output, (tuple, list)):
for res in last_output:
if res['name'] == self.model_eval: res.update(items)
else: last_output.update(items)
return last_output
def on_batch_end(self, last_output, last_target, **kwargs):
output = self._get_output(last_output)
logits, pt_lengths = output['logits'], output['pt_lengths']
pt_text, pt_scores, pt_lengths_ = self.decode(logits)
assert (pt_lengths == pt_lengths_).all(), f'{pt_lengths} != {pt_lengths_} for {pt_text}'
last_output = self._update_output(last_output, {'pt_text':pt_text, 'pt_scores':pt_scores})
pt_text = [self.charset.trim(t) for t in pt_text]
label = last_target[0]
if label.dim() == 3: label = label.argmax(dim=-1) # one-hot label
gt_text = [self.charset.get_text(l, trim=True) for l in label]
for i in range(len(gt_text)):
if not self.case_sensitive:
gt_text[i], pt_text[i] = gt_text[i].lower(), pt_text[i].lower()
distance = ed.eval(gt_text[i], pt_text[i])
self.total_ed += distance
self.total_ned += float(distance) / max(len(gt_text[i]), 1)
if gt_text[i] == pt_text[i]:
self.correct_num_word += 1
self.total_num_word += 1
for j in range(min(len(gt_text[i]), len(pt_text[i]))):
if gt_text[i][j] == pt_text[i][j]:
self.correct_num_char += 1
self.total_num_char += len(gt_text[i])
return {'last_output': last_output}
def on_epoch_end(self, last_metrics, **kwargs):
mets = [self.correct_num_char / self.total_num_char,
self.correct_num_word / self.total_num_word,
self.total_ed,
self.total_ned,
self.total_ed / self.total_num_word]
return add_metrics(last_metrics, mets)
def decode(self, logit):
""" Greed decode """
# TODO: test running time and decode on GPU
out = F.softmax(logit, dim=2)
pt_text, pt_scores, pt_lengths = [], [], []
for o in out:
text = self.charset.get_text(o.argmax(dim=1), padding=False, trim=False)
text = text.split(self.charset.null_char)[0] # end at end-token
pt_text.append(text)
pt_scores.append(o.max(dim=1)[0])
pt_lengths.append(min(len(text) + 1, self.max_length)) # one for end-token
pt_scores = torch.stack(pt_scores)
pt_lengths = pt_scores.new_tensor(pt_lengths, dtype=torch.long)
return pt_text, pt_scores, pt_lengths
class TopKTextAccuracy(TextAccuracy):
_names = ['ccr', 'cwr']
def __init__(self, k, charset_path, max_length, case_sensitive, model_eval):
self.k = k
self.charset_path = charset_path
self.max_length = max_length
self.case_sensitive = case_sensitive
self.charset = CharsetMapper(charset_path, self.max_length)
self.names = self._names
def on_epoch_begin(self, **kwargs):
self.total_num_char = 0.
self.total_num_word = 0.
self.correct_num_char = 0.
self.correct_num_word = 0.
def on_batch_end(self, last_output, last_target, **kwargs):
logits, pt_lengths = last_output['logits'], last_output['pt_lengths']
gt_labels, gt_lengths = last_target[:]
for logit, pt_length, label, length in zip(logits, pt_lengths, gt_labels, gt_lengths):
word_flag = True
for i in range(length):
char_logit = logit[i].topk(self.k)[1]
char_label = label[i].argmax(-1)
if char_label in char_logit: self.correct_num_char += 1
else: word_flag = False
self.total_num_char += 1
if pt_length == length and word_flag:
self.correct_num_word += 1
self.total_num_word += 1
def on_epoch_end(self, last_metrics, **kwargs):
mets = [self.correct_num_char / self.total_num_char,
self.correct_num_word / self.total_num_word,
0., 0., 0.]
return add_metrics(last_metrics, mets)
class DumpPrediction(LearnerCallback):
def __init__(self, learn, dataset, charset_path, model_eval, image_only=False, debug=False):
super().__init__(learn=learn)
self.debug = debug
self.model_eval = model_eval or 'alignment'
self.image_only = image_only
assert self.model_eval in ['vision', 'language', 'alignment']
self.dataset, self.root = dataset, Path(self.learn.path)/f'{dataset}-{self.model_eval}'
self.attn_root = self.root/'attn'
self.charset = CharsetMapper(charset_path)
if self.root.exists(): shutil.rmtree(self.root)
self.root.mkdir(), self.attn_root.mkdir()
self.pil = transforms.ToPILImage()
self.tensor = transforms.ToTensor()
size = self.learn.data.img_h, self.learn.data.img_w
self.resize = transforms.Resize(size=size, interpolation=0)
self.c = 0
def on_batch_end(self, last_input, last_output, last_target, **kwargs):
if isinstance(last_output, (tuple, list)):
for res in last_output:
if res['name'] == self.model_eval: pt_text = res['pt_text']
if res['name'] == 'vision': attn_scores = res['attn_scores'].detach().cpu()
if res['name'] == self.model_eval: logits = res['logits']
else:
pt_text = last_output['pt_text']
attn_scores = last_output['attn_scores'].detach().cpu()
logits = last_output['logits']
images = last_input[0] if isinstance(last_input, (tuple, list)) else last_input
images = images.detach().cpu()
pt_text = [self.charset.trim(t) for t in pt_text]
gt_label = last_target[0]
if gt_label.dim() == 3: gt_label = gt_label.argmax(dim=-1) # one-hot label
gt_text = [self.charset.get_text(l, trim=True) for l in gt_label]
prediction, false_prediction = [], []
for gt, pt, image, attn, logit in zip(gt_text, pt_text, images, attn_scores, logits):
prediction.append(f'{gt}\t{pt}\n')
if gt != pt:
if self.debug:
scores = torch.softmax(logit, dim=-1)[:max(len(pt), len(gt)) + 1]
logging.info(f'{self.c} gt {gt}, pt {pt}, logit {logit.shape}, scores {scores.topk(5, dim=-1)}')
false_prediction.append(f'{gt}\t{pt}\n')
image = self.learn.data.denorm(image)
if not self.image_only:
image_np = np.array(self.pil(image))
attn_pil = [self.pil(a) for a in attn[:, None, :, :]]
attn = [self.tensor(self.resize(a)).repeat(3, 1, 1) for a in attn_pil]
attn_sum = np.array([np.array(a) for a in attn_pil[:len(pt)]]).sum(axis=0)
blended_sum = self.tensor(blend_mask(image_np, attn_sum))
blended = [self.tensor(blend_mask(image_np, np.array(a))) for a in attn_pil]
save_image = torch.stack([image] + attn + [blended_sum] + blended)
save_image = save_image.view(2, -1, *save_image.shape[1:])
save_image = save_image.permute(1, 0, 2, 3, 4).flatten(0, 1)
vutils.save_image(save_image, self.attn_root/f'{self.c}_{gt}_{pt}.jpg',
nrow=2, normalize=True, scale_each=True)
else:
self.pil(image).save(self.attn_root/f'{self.c}_{gt}_{pt}.jpg')
self.c += 1
with open(self.root/f'{self.model_eval}.txt', 'a') as f: f.writelines(prediction)
with open(self.root/f'{self.model_eval}-false.txt', 'a') as f: f.writelines(false_prediction)
|