File size: 10,726 Bytes
220c28f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import argparse
import logging
import os
import random
import torch
from fastai.callbacks.general_sched import GeneralScheduler, TrainingPhase
from fastai.distributed import *
from fastai.vision import *
from torch.backends import cudnn
from callbacks import DumpPrediction, IterationCallback, TextAccuracy, TopKTextAccuracy
from dataset import ImageDataset, TextDataset
from losses import MultiLosses
from utils import Config, Logger, MyDataParallel, MyConcatDataset
def _set_random_seed(seed):
if seed is not None:
random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
logging.warning('You have chosen to seed training. '
'This will slow down your training!')
def _get_training_phases(config, n):
lr = np.array(config.optimizer_lr)
periods = config.optimizer_scheduler_periods
sigma = [config.optimizer_scheduler_gamma ** i for i in range(len(periods))]
phases = [TrainingPhase(n * periods[i]).schedule_hp('lr', lr * sigma[i])
for i in range(len(periods))]
return phases
def _get_dataset(ds_type, paths, is_training, config, **kwargs):
kwargs.update({
'img_h': config.dataset_image_height,
'img_w': config.dataset_image_width,
'max_length': config.dataset_max_length,
'case_sensitive': config.dataset_case_sensitive,
'charset_path': config.dataset_charset_path,
'data_aug': config.dataset_data_aug,
'deteriorate_ratio': config.dataset_deteriorate_ratio,
'is_training': is_training,
'multiscales': config.dataset_multiscales,
'one_hot_y': config.dataset_one_hot_y,
})
datasets = [ds_type(p, **kwargs) for p in paths]
if len(datasets) > 1: return MyConcatDataset(datasets)
else: return datasets[0]
def _get_language_databaunch(config):
kwargs = {
'max_length': config.dataset_max_length,
'case_sensitive': config.dataset_case_sensitive,
'charset_path': config.dataset_charset_path,
'smooth_label': config.dataset_smooth_label,
'smooth_factor': config.dataset_smooth_factor,
'one_hot_y': config.dataset_one_hot_y,
'use_sm': config.dataset_use_sm,
}
train_ds = TextDataset(config.dataset_train_roots[0], is_training=True, **kwargs)
valid_ds = TextDataset(config.dataset_test_roots[0], is_training=False, **kwargs)
data = DataBunch.create(
path=train_ds.path,
train_ds=train_ds,
valid_ds=valid_ds,
bs=config.dataset_train_batch_size,
val_bs=config.dataset_test_batch_size,
num_workers=config.dataset_num_workers,
pin_memory=config.dataset_pin_memory)
logging.info(f'{len(data.train_ds)} training items found.')
if not data.empty_val:
logging.info(f'{len(data.valid_ds)} valid items found.')
return data
def _get_databaunch(config):
# An awkward way to reduce loadding data time during test
if config.global_phase == 'test': config.dataset_train_roots = config.dataset_test_roots
train_ds = _get_dataset(ImageDataset, config.dataset_train_roots, True, config)
valid_ds = _get_dataset(ImageDataset, config.dataset_test_roots, False, config)
data = ImageDataBunch.create(
train_ds=train_ds,
valid_ds=valid_ds,
bs=config.dataset_train_batch_size,
val_bs=config.dataset_test_batch_size,
num_workers=config.dataset_num_workers,
pin_memory=config.dataset_pin_memory).normalize(imagenet_stats)
ar_tfm = lambda x: ((x[0], x[1]), x[1]) # auto-regression only for dtd
data.add_tfm(ar_tfm)
logging.info(f'{len(data.train_ds)} training items found.')
if not data.empty_val:
logging.info(f'{len(data.valid_ds)} valid items found.')
return data
def _get_model(config):
import importlib
names = config.model_name.split('.')
module_name, class_name = '.'.join(names[:-1]), names[-1]
cls = getattr(importlib.import_module(module_name), class_name)
model = cls(config)
logging.info(model)
return model
def _get_learner(config, data, model, local_rank=None):
strict = ifnone(config.model_strict, True)
if config.global_stage == 'pretrain-language':
metrics = [TopKTextAccuracy(
k=ifnone(config.model_k, 5),
charset_path=config.dataset_charset_path,
max_length=config.dataset_max_length + 1,
case_sensitive=config.dataset_eval_case_sensisitves,
model_eval=config.model_eval)]
else:
metrics = [TextAccuracy(
charset_path=config.dataset_charset_path,
max_length=config.dataset_max_length + 1,
case_sensitive=config.dataset_eval_case_sensisitves,
model_eval=config.model_eval)]
opt_type = getattr(torch.optim, config.optimizer_type)
learner = Learner(data, model, silent=True, model_dir='.',
true_wd=config.optimizer_true_wd,
wd=config.optimizer_wd,
bn_wd=config.optimizer_bn_wd,
path=config.global_workdir,
metrics=metrics,
opt_func=partial(opt_type, **config.optimizer_args or dict()),
loss_func=MultiLosses(one_hot=config.dataset_one_hot_y))
learner.split(lambda m: children(m))
if config.global_phase == 'train':
num_replicas = 1 if local_rank is None else torch.distributed.get_world_size()
phases = _get_training_phases(config, len(learner.data.train_dl)//num_replicas)
learner.callback_fns += [
partial(GeneralScheduler, phases=phases),
partial(GradientClipping, clip=config.optimizer_clip_grad),
partial(IterationCallback, name=config.global_name,
show_iters=config.training_show_iters,
eval_iters=config.training_eval_iters,
save_iters=config.training_save_iters,
start_iters=config.training_start_iters,
stats_iters=config.training_stats_iters)]
else:
learner.callbacks += [
DumpPrediction(learn=learner,
dataset='-'.join([Path(p).name for p in config.dataset_test_roots]),charset_path=config.dataset_charset_path,
model_eval=config.model_eval,
debug=config.global_debug,
image_only=config.global_image_only)]
learner.rank = local_rank
if local_rank is not None:
logging.info(f'Set model to distributed with rank {local_rank}.')
learner.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(learner.model)
learner.model.to(local_rank)
learner = learner.to_distributed(local_rank)
if torch.cuda.device_count() > 1 and local_rank is None:
logging.info(f'Use {torch.cuda.device_count()} GPUs.')
learner.model = MyDataParallel(learner.model)
if config.model_checkpoint:
if Path(config.model_checkpoint).exists():
with open(config.model_checkpoint, 'rb') as f:
buffer = io.BytesIO(f.read())
learner.load(buffer, strict=strict)
else:
from distutils.dir_util import copy_tree
src = Path('/data/fangsc/model')/config.global_name
trg = Path('/output')/config.global_name
if src.exists(): copy_tree(str(src), str(trg))
learner.load(config.model_checkpoint, strict=strict)
logging.info(f'Read model from {config.model_checkpoint}')
elif config.global_phase == 'test':
learner.load(f'best-{config.global_name}', strict=strict)
logging.info(f'Read model from best-{config.global_name}')
if learner.opt_func.func.__name__ == 'Adadelta': # fastai bug, fix after 1.0.60
learner.fit(epochs=0, lr=config.optimizer_lr)
learner.opt.mom = 0.
return learner
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True,
help='path to config file')
parser.add_argument('--phase', type=str, default=None, choices=['train', 'test'])
parser.add_argument('--name', type=str, default=None)
parser.add_argument('--checkpoint', type=str, default=None)
parser.add_argument('--test_root', type=str, default=None)
parser.add_argument("--local_rank", type=int, default=None)
parser.add_argument('--debug', action='store_true', default=None)
parser.add_argument('--image_only', action='store_true', default=None)
parser.add_argument('--model_strict', action='store_false', default=None)
parser.add_argument('--model_eval', type=str, default=None,
choices=['alignment', 'vision', 'language'])
args = parser.parse_args()
config = Config(args.config)
if args.name is not None: config.global_name = args.name
if args.phase is not None: config.global_phase = args.phase
if args.test_root is not None: config.dataset_test_roots = [args.test_root]
if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
if args.debug is not None: config.global_debug = args.debug
if args.image_only is not None: config.global_image_only = args.image_only
if args.model_eval is not None: config.model_eval = args.model_eval
if args.model_strict is not None: config.model_strict = args.model_strict
Logger.init(config.global_workdir, config.global_name, config.global_phase)
Logger.enable_file()
_set_random_seed(config.global_seed)
logging.info(config)
if args.local_rank is not None:
logging.info(f'Init distribution training at device {args.local_rank}.')
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
logging.info('Construct dataset.')
if config.global_stage == 'pretrain-language': data = _get_language_databaunch(config)
else: data = _get_databaunch(config)
logging.info('Construct model.')
model = _get_model(config)
logging.info('Construct learner.')
learner = _get_learner(config, data, model, args.local_rank)
if config.global_phase == 'train':
logging.info('Start training.')
learner.fit(epochs=config.training_epochs,
lr=config.optimizer_lr)
else:
logging.info('Start validate')
last_metrics = learner.validate()
log_str = f'eval loss = {last_metrics[0]:6.3f}, ' \
f'ccr = {last_metrics[1]:6.3f}, cwr = {last_metrics[2]:6.3f}, ' \
f'ted = {last_metrics[3]:6.3f}, ned = {last_metrics[4]:6.0f}, ' \
f'ted/w = {last_metrics[5]:6.3f}, '
logging.info(log_str)
if __name__ == '__main__':
main()
|