|
from fastai.vision import * |
|
|
|
from modules.model import Model |
|
|
|
|
|
class MultiLosses(nn.Module): |
|
def __init__(self, one_hot=True): |
|
super().__init__() |
|
self.ce = SoftCrossEntropyLoss() if one_hot else torch.nn.CrossEntropyLoss() |
|
self.bce = torch.nn.BCELoss() |
|
|
|
@property |
|
def last_losses(self): |
|
return self.losses |
|
|
|
def _flatten(self, sources, lengths): |
|
return torch.cat([t[:l] for t, l in zip(sources, lengths)]) |
|
|
|
def _merge_list(self, all_res): |
|
if not isinstance(all_res, (list, tuple)): |
|
return all_res |
|
def merge(items): |
|
if isinstance(items[0], torch.Tensor): return torch.cat(items, dim=0) |
|
else: return items[0] |
|
res = dict() |
|
for key in all_res[0].keys(): |
|
items = [r[key] for r in all_res] |
|
res[key] = merge(items) |
|
return res |
|
|
|
def _ce_loss(self, output, gt_labels, gt_lengths, idx=None, record=True): |
|
loss_name = output.get('name') |
|
pt_logits, weight = output['logits'], output['loss_weight'] |
|
|
|
assert pt_logits.shape[0] % gt_labels.shape[0] == 0 |
|
iter_size = pt_logits.shape[0] // gt_labels.shape[0] |
|
if iter_size > 1: |
|
gt_labels = gt_labels.repeat(3, 1, 1) |
|
gt_lengths = gt_lengths.repeat(3) |
|
flat_gt_labels = self._flatten(gt_labels, gt_lengths) |
|
flat_pt_logits = self._flatten(pt_logits, gt_lengths) |
|
|
|
nll = output.get('nll') |
|
if nll is not None: |
|
loss = self.ce(flat_pt_logits, flat_gt_labels, softmax=False) * weight |
|
else: |
|
loss = self.ce(flat_pt_logits, flat_gt_labels) * weight |
|
if record and loss_name is not None: self.losses[f'{loss_name}_loss'] = loss |
|
|
|
return loss |
|
|
|
def forward(self, outputs, *args): |
|
self.losses = {} |
|
if isinstance(outputs, (tuple, list)): |
|
outputs = [self._merge_list(o) for o in outputs] |
|
return sum([self._ce_loss(o, *args) for o in outputs if o['loss_weight'] > 0.]) |
|
else: |
|
return self._ce_loss(outputs, *args, record=False) |
|
|
|
|
|
class SoftCrossEntropyLoss(nn.Module): |
|
def __init__(self, reduction="mean"): |
|
super().__init__() |
|
self.reduction = reduction |
|
|
|
def forward(self, input, target, softmax=True): |
|
if softmax: log_prob = F.log_softmax(input, dim=-1) |
|
else: log_prob = torch.log(input) |
|
loss = -(target * log_prob).sum(dim=-1) |
|
if self.reduction == "mean": return loss.mean() |
|
elif self.reduction == "sum": return loss.sum() |
|
else: return loss |
|
|