|
import torch |
|
import torch.nn as nn |
|
from .transformer import PositionalEncoding |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, in_channels=512, max_length=25, n_feature=256): |
|
super().__init__() |
|
self.max_length = max_length |
|
|
|
self.f0_embedding = nn.Embedding(max_length, in_channels) |
|
self.w0 = nn.Linear(max_length, n_feature) |
|
self.wv = nn.Linear(in_channels, in_channels) |
|
self.we = nn.Linear(in_channels, max_length) |
|
|
|
self.active = nn.Tanh() |
|
self.softmax = nn.Softmax(dim=2) |
|
|
|
def forward(self, enc_output): |
|
enc_output = enc_output.permute(0, 2, 3, 1).flatten(1, 2) |
|
reading_order = torch.arange(self.max_length, dtype=torch.long, device=enc_output.device) |
|
reading_order = reading_order.unsqueeze(0).expand(enc_output.size(0), -1) |
|
reading_order_embed = self.f0_embedding(reading_order) |
|
|
|
t = self.w0(reading_order_embed.permute(0, 2, 1)) |
|
t = self.active(t.permute(0, 2, 1) + self.wv(enc_output)) |
|
|
|
attn = self.we(t) |
|
attn = self.softmax(attn.permute(0, 2, 1)) |
|
g_output = torch.bmm(attn, enc_output) |
|
return g_output, attn.view(*attn.shape[:2], 8, 32) |
|
|
|
|
|
def encoder_layer(in_c, out_c, k=3, s=2, p=1): |
|
return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p), |
|
nn.BatchNorm2d(out_c), |
|
nn.ReLU(True)) |
|
|
|
def decoder_layer(in_c, out_c, k=3, s=1, p=1, mode='nearest', scale_factor=None, size=None): |
|
align_corners = None if mode=='nearest' else True |
|
return nn.Sequential(nn.Upsample(size=size, scale_factor=scale_factor, |
|
mode=mode, align_corners=align_corners), |
|
nn.Conv2d(in_c, out_c, k, s, p), |
|
nn.BatchNorm2d(out_c), |
|
nn.ReLU(True)) |
|
|
|
|
|
class PositionAttention(nn.Module): |
|
def __init__(self, max_length, in_channels=512, num_channels=64, |
|
h=8, w=32, mode='nearest', **kwargs): |
|
super().__init__() |
|
self.max_length = max_length |
|
self.k_encoder = nn.Sequential( |
|
encoder_layer(in_channels, num_channels, s=(1, 2)), |
|
encoder_layer(num_channels, num_channels, s=(2, 2)), |
|
encoder_layer(num_channels, num_channels, s=(2, 2)), |
|
encoder_layer(num_channels, num_channels, s=(2, 2)) |
|
) |
|
self.k_decoder = nn.Sequential( |
|
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode), |
|
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode), |
|
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode), |
|
decoder_layer(num_channels, in_channels, size=(h, w), mode=mode) |
|
) |
|
|
|
self.pos_encoder = PositionalEncoding(in_channels, dropout=0, max_len=max_length) |
|
self.project = nn.Linear(in_channels, in_channels) |
|
|
|
def forward(self, x): |
|
N, E, H, W = x.size() |
|
k, v = x, x |
|
|
|
|
|
features = [] |
|
for i in range(0, len(self.k_encoder)): |
|
k = self.k_encoder[i](k) |
|
features.append(k) |
|
for i in range(0, len(self.k_decoder) - 1): |
|
k = self.k_decoder[i](k) |
|
k = k + features[len(self.k_decoder) - 2 - i] |
|
k = self.k_decoder[-1](k) |
|
|
|
|
|
|
|
zeros = x.new_zeros((self.max_length, N, E)) |
|
q = self.pos_encoder(zeros) |
|
q = q.permute(1, 0, 2) |
|
q = self.project(q) |
|
|
|
|
|
attn_scores = torch.bmm(q, k.flatten(2, 3)) |
|
attn_scores = attn_scores / (E ** 0.5) |
|
attn_scores = torch.softmax(attn_scores, dim=-1) |
|
|
|
v = v.permute(0, 2, 3, 1).view(N, -1, E) |
|
attn_vecs = torch.bmm(attn_scores, v) |
|
|
|
return attn_vecs, attn_scores.view(N, -1, H, W) |
|
|