|
import logging |
|
import torch.nn as nn |
|
from fastai.vision import * |
|
|
|
from modules.model import _default_tfmer_cfg |
|
from modules.model import Model |
|
from modules.transformer import (PositionalEncoding, |
|
TransformerDecoder, |
|
TransformerDecoderLayer) |
|
|
|
|
|
class BCNLanguage(Model): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
d_model = ifnone(config.model_language_d_model, _default_tfmer_cfg['d_model']) |
|
nhead = ifnone(config.model_language_nhead, _default_tfmer_cfg['nhead']) |
|
d_inner = ifnone(config.model_language_d_inner, _default_tfmer_cfg['d_inner']) |
|
dropout = ifnone(config.model_language_dropout, _default_tfmer_cfg['dropout']) |
|
activation = ifnone(config.model_language_activation, _default_tfmer_cfg['activation']) |
|
num_layers = ifnone(config.model_language_num_layers, 4) |
|
self.d_model = d_model |
|
self.detach = ifnone(config.model_language_detach, True) |
|
self.use_self_attn = ifnone(config.model_language_use_self_attn, False) |
|
self.loss_weight = ifnone(config.model_language_loss_weight, 1.0) |
|
self.max_length = config.dataset_max_length + 1 |
|
self.debug = ifnone(config.global_debug, False) |
|
|
|
self.proj = nn.Linear(self.charset.num_classes, d_model, False) |
|
self.token_encoder = PositionalEncoding(d_model, max_len=self.max_length) |
|
self.pos_encoder = PositionalEncoding(d_model, dropout=0, max_len=self.max_length) |
|
decoder_layer = TransformerDecoderLayer(d_model, nhead, d_inner, dropout, |
|
activation, self_attn=self.use_self_attn, debug=self.debug) |
|
self.model = TransformerDecoder(decoder_layer, num_layers) |
|
|
|
self.cls = nn.Linear(d_model, self.charset.num_classes) |
|
|
|
if config.model_language_checkpoint is not None: |
|
logging.info(f'Read language model from {config.model_language_checkpoint}.') |
|
self.load(config.model_language_checkpoint) |
|
|
|
def forward(self, tokens, lengths): |
|
""" |
|
Args: |
|
tokens: (N, T, C) where T is length, N is batch size and C is classes number |
|
lengths: (N,) |
|
""" |
|
if self.detach: tokens = tokens.detach() |
|
embed = self.proj(tokens) |
|
embed = embed.permute(1, 0, 2) |
|
embed = self.token_encoder(embed) |
|
padding_mask = self._get_padding_mask(lengths, self.max_length) |
|
|
|
zeros = embed.new_zeros(*embed.shape) |
|
qeury = self.pos_encoder(zeros) |
|
location_mask = self._get_location_mask(self.max_length, tokens.device) |
|
output = self.model(qeury, embed, |
|
tgt_key_padding_mask=padding_mask, |
|
memory_mask=location_mask, |
|
memory_key_padding_mask=padding_mask) |
|
output = output.permute(1, 0, 2) |
|
|
|
logits = self.cls(output) |
|
pt_lengths = self._get_length(logits) |
|
|
|
res = {'feature': output, 'logits': logits, 'pt_lengths': pt_lengths, |
|
'loss_weight':self.loss_weight, 'name': 'language'} |
|
return res |
|
|