|
import math |
|
import numbers |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
from torchvision import transforms |
|
from torchvision.transforms import Compose |
|
|
|
|
|
def sample_asym(magnitude, size=None): |
|
return np.random.beta(1, 4, size) * magnitude |
|
|
|
def sample_sym(magnitude, size=None): |
|
return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude |
|
|
|
def sample_uniform(low, high, size=None): |
|
return np.random.uniform(low, high, size=size) |
|
|
|
def get_interpolation(type='random'): |
|
if type == 'random': |
|
choice = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA] |
|
interpolation = choice[random.randint(0, len(choice)-1)] |
|
elif type == 'nearest': interpolation = cv2.INTER_NEAREST |
|
elif type == 'linear': interpolation = cv2.INTER_LINEAR |
|
elif type == 'cubic': interpolation = cv2.INTER_CUBIC |
|
elif type == 'area': interpolation = cv2.INTER_AREA |
|
else: raise TypeError('Interpolation types only nearest, linear, cubic, area are supported!') |
|
return interpolation |
|
|
|
class CVRandomRotation(object): |
|
def __init__(self, degrees=15): |
|
assert isinstance(degrees, numbers.Number), "degree should be a single number." |
|
assert degrees >= 0, "degree must be positive." |
|
self.degrees = degrees |
|
|
|
@staticmethod |
|
def get_params(degrees): |
|
return sample_sym(degrees) |
|
|
|
def __call__(self, img): |
|
angle = self.get_params(self.degrees) |
|
src_h, src_w = img.shape[:2] |
|
M = cv2.getRotationMatrix2D(center=(src_w/2, src_h/2), angle=angle, scale=1.0) |
|
abs_cos, abs_sin = abs(M[0,0]), abs(M[0,1]) |
|
dst_w = int(src_h * abs_sin + src_w * abs_cos) |
|
dst_h = int(src_h * abs_cos + src_w * abs_sin) |
|
M[0, 2] += (dst_w - src_w)/2 |
|
M[1, 2] += (dst_h - src_h)/2 |
|
|
|
flags = get_interpolation() |
|
return cv2.warpAffine(img, M, (dst_w, dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE) |
|
|
|
class CVRandomAffine(object): |
|
def __init__(self, degrees, translate=None, scale=None, shear=None): |
|
assert isinstance(degrees, numbers.Number), "degree should be a single number." |
|
assert degrees >= 0, "degree must be positive." |
|
self.degrees = degrees |
|
|
|
if translate is not None: |
|
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ |
|
"translate should be a list or tuple and it must be of length 2." |
|
for t in translate: |
|
if not (0.0 <= t <= 1.0): |
|
raise ValueError("translation values should be between 0 and 1") |
|
self.translate = translate |
|
|
|
if scale is not None: |
|
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ |
|
"scale should be a list or tuple and it must be of length 2." |
|
for s in scale: |
|
if s <= 0: |
|
raise ValueError("scale values should be positive") |
|
self.scale = scale |
|
|
|
if shear is not None: |
|
if isinstance(shear, numbers.Number): |
|
if shear < 0: |
|
raise ValueError("If shear is a single number, it must be positive.") |
|
self.shear = [shear] |
|
else: |
|
assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \ |
|
"shear should be a list or tuple and it must be of length 2." |
|
self.shear = shear |
|
else: |
|
self.shear = shear |
|
|
|
def _get_inverse_affine_matrix(self, center, angle, translate, scale, shear): |
|
|
|
from numpy import sin, cos, tan |
|
|
|
if isinstance(shear, numbers.Number): |
|
shear = [shear, 0] |
|
|
|
if not isinstance(shear, (tuple, list)) and len(shear) == 2: |
|
raise ValueError( |
|
"Shear should be a single value or a tuple/list containing " + |
|
"two values. Got {}".format(shear)) |
|
|
|
rot = math.radians(angle) |
|
sx, sy = [math.radians(s) for s in shear] |
|
|
|
cx, cy = center |
|
tx, ty = translate |
|
|
|
|
|
a = cos(rot - sy) / cos(sy) |
|
b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot) |
|
c = sin(rot - sy) / cos(sy) |
|
d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot) |
|
|
|
|
|
|
|
M = [d, -b, 0, |
|
-c, a, 0] |
|
M = [x / scale for x in M] |
|
|
|
|
|
M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty) |
|
M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty) |
|
|
|
|
|
M[2] += cx |
|
M[5] += cy |
|
return M |
|
|
|
@staticmethod |
|
def get_params(degrees, translate, scale_ranges, shears, height): |
|
angle = sample_sym(degrees) |
|
if translate is not None: |
|
max_dx = translate[0] * height |
|
max_dy = translate[1] * height |
|
translations = (np.round(sample_sym(max_dx)), np.round(sample_sym(max_dy))) |
|
else: |
|
translations = (0, 0) |
|
|
|
if scale_ranges is not None: |
|
scale = sample_uniform(scale_ranges[0], scale_ranges[1]) |
|
else: |
|
scale = 1.0 |
|
|
|
if shears is not None: |
|
if len(shears) == 1: |
|
shear = [sample_sym(shears[0]), 0.] |
|
elif len(shears) == 2: |
|
shear = [sample_sym(shears[0]), sample_sym(shears[1])] |
|
else: |
|
shear = 0.0 |
|
|
|
return angle, translations, scale, shear |
|
|
|
|
|
def __call__(self, img): |
|
src_h, src_w = img.shape[:2] |
|
angle, translate, scale, shear = self.get_params( |
|
self.degrees, self.translate, self.scale, self.shear, src_h) |
|
|
|
M = self._get_inverse_affine_matrix((src_w/2, src_h/2), angle, (0, 0), scale, shear) |
|
M = np.array(M).reshape(2,3) |
|
|
|
startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1), (0, src_h - 1)] |
|
project = lambda x, y, a, b, c: int(a*x + b*y + c) |
|
endpoints = [(project(x, y, *M[0]), project(x, y, *M[1])) for x, y in startpoints] |
|
|
|
rect = cv2.minAreaRect(np.array(endpoints)) |
|
bbox = cv2.boxPoints(rect).astype(dtype=np.int) |
|
max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() |
|
min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() |
|
|
|
dst_w = int(max_x - min_x) |
|
dst_h = int(max_y - min_y) |
|
M[0, 2] += (dst_w - src_w) / 2 |
|
M[1, 2] += (dst_h - src_h) / 2 |
|
|
|
|
|
dst_w += int(abs(translate[0])) |
|
dst_h += int(abs(translate[1])) |
|
if translate[0] < 0: M[0, 2] += abs(translate[0]) |
|
if translate[1] < 0: M[1, 2] += abs(translate[1]) |
|
|
|
flags = get_interpolation() |
|
return cv2.warpAffine(img, M, (dst_w , dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE) |
|
|
|
class CVRandomPerspective(object): |
|
def __init__(self, distortion=0.5): |
|
self.distortion = distortion |
|
|
|
def get_params(self, width, height, distortion): |
|
offset_h = sample_asym(distortion * height / 2, size=4).astype(dtype=np.int) |
|
offset_w = sample_asym(distortion * width / 2, size=4).astype(dtype=np.int) |
|
topleft = ( offset_w[0], offset_h[0]) |
|
topright = (width - 1 - offset_w[1], offset_h[1]) |
|
botright = (width - 1 - offset_w[2], height - 1 - offset_h[2]) |
|
botleft = ( offset_w[3], height - 1 - offset_h[3]) |
|
|
|
startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)] |
|
endpoints = [topleft, topright, botright, botleft] |
|
return np.array(startpoints, dtype=np.float32), np.array(endpoints, dtype=np.float32) |
|
|
|
def __call__(self, img): |
|
height, width = img.shape[:2] |
|
startpoints, endpoints = self.get_params(width, height, self.distortion) |
|
M = cv2.getPerspectiveTransform(startpoints, endpoints) |
|
|
|
|
|
rect = cv2.minAreaRect(endpoints) |
|
bbox = cv2.boxPoints(rect).astype(dtype=np.int) |
|
max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() |
|
min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() |
|
min_x, min_y = max(min_x, 0), max(min_y, 0) |
|
|
|
flags = get_interpolation() |
|
img = cv2.warpPerspective(img, M, (max_x, max_y), flags=flags, borderMode=cv2.BORDER_REPLICATE) |
|
img = img[min_y:, min_x:] |
|
return img |
|
|
|
class CVRescale(object): |
|
|
|
def __init__(self, factor=4, base_size=(128, 512)): |
|
""" Define image scales using gaussian pyramid and rescale image to target scale. |
|
|
|
Args: |
|
factor: the decayed factor from base size, factor=4 keeps target scale by default. |
|
base_size: base size the build the bottom layer of pyramid |
|
""" |
|
if isinstance(factor, numbers.Number): |
|
self.factor = round(sample_uniform(0, factor)) |
|
elif isinstance(factor, (tuple, list)) and len(factor) == 2: |
|
self.factor = round(sample_uniform(factor[0], factor[1])) |
|
else: |
|
raise Exception('factor must be number or list with length 2') |
|
|
|
self.base_h, self.base_w = base_size[:2] |
|
|
|
def __call__(self, img): |
|
if self.factor == 0: return img |
|
src_h, src_w = img.shape[:2] |
|
cur_w, cur_h = self.base_w, self.base_h |
|
scale_img = cv2.resize(img, (cur_w, cur_h), interpolation=get_interpolation()) |
|
for _ in range(self.factor): |
|
scale_img = cv2.pyrDown(scale_img) |
|
scale_img = cv2.resize(scale_img, (src_w, src_h), interpolation=get_interpolation()) |
|
return scale_img |
|
|
|
class CVGaussianNoise(object): |
|
def __init__(self, mean=0, var=20): |
|
self.mean = mean |
|
if isinstance(var, numbers.Number): |
|
self.var = max(int(sample_asym(var)), 1) |
|
elif isinstance(var, (tuple, list)) and len(var) == 2: |
|
self.var = int(sample_uniform(var[0], var[1])) |
|
else: |
|
raise Exception('degree must be number or list with length 2') |
|
|
|
def __call__(self, img): |
|
noise = np.random.normal(self.mean, self.var**0.5, img.shape) |
|
img = np.clip(img + noise, 0, 255).astype(np.uint8) |
|
return img |
|
|
|
class CVMotionBlur(object): |
|
def __init__(self, degrees=12, angle=90): |
|
if isinstance(degrees, numbers.Number): |
|
self.degree = max(int(sample_asym(degrees)), 1) |
|
elif isinstance(degrees, (tuple, list)) and len(degrees) == 2: |
|
self.degree = int(sample_uniform(degrees[0], degrees[1])) |
|
else: |
|
raise Exception('degree must be number or list with length 2') |
|
self.angle = sample_uniform(-angle, angle) |
|
|
|
def __call__(self, img): |
|
M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2), self.angle, 1) |
|
motion_blur_kernel = np.zeros((self.degree, self.degree)) |
|
motion_blur_kernel[self.degree // 2, :] = 1 |
|
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (self.degree, self.degree)) |
|
motion_blur_kernel = motion_blur_kernel / self.degree |
|
img = cv2.filter2D(img, -1, motion_blur_kernel) |
|
img = np.clip(img, 0, 255).astype(np.uint8) |
|
return img |
|
|
|
class CVGeometry(object): |
|
def __init__(self, degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.), |
|
shear=(45, 15), distortion=0.5, p=0.5): |
|
self.p = p |
|
type_p = random.random() |
|
if type_p < 0.33: |
|
self.transforms = CVRandomRotation(degrees=degrees) |
|
elif type_p < 0.66: |
|
self.transforms = CVRandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear) |
|
else: |
|
self.transforms = CVRandomPerspective(distortion=distortion) |
|
|
|
def __call__(self, img): |
|
if random.random() < self.p: |
|
img = np.array(img) |
|
return Image.fromarray(self.transforms(img)) |
|
else: return img |
|
|
|
class CVDeterioration(object): |
|
def __init__(self, var, degrees, factor, p=0.5): |
|
self.p = p |
|
transforms = [] |
|
if var is not None: |
|
transforms.append(CVGaussianNoise(var=var)) |
|
if degrees is not None: |
|
transforms.append(CVMotionBlur(degrees=degrees)) |
|
if factor is not None: |
|
transforms.append(CVRescale(factor=factor)) |
|
|
|
random.shuffle(transforms) |
|
transforms = Compose(transforms) |
|
self.transforms = transforms |
|
|
|
def __call__(self, img): |
|
if random.random() < self.p: |
|
img = np.array(img) |
|
return Image.fromarray(self.transforms(img)) |
|
else: return img |
|
|
|
|
|
class CVColorJitter(object): |
|
def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.5): |
|
self.p = p |
|
self.transforms = transforms.ColorJitter(brightness=brightness, contrast=contrast, |
|
saturation=saturation, hue=hue) |
|
|
|
def __call__(self, img): |
|
if random.random() < self.p: return self.transforms(img) |
|
else: return img |
|
|