import logging import re import cv2 import lmdb import six from fastai.vision import * from torchvision import transforms from transforms import CVColorJitter, CVDeterioration, CVGeometry from utils import CharsetMapper, onehot class ImageDataset(Dataset): "`ImageDataset` read data from LMDB database." def __init__(self, path:PathOrStr, is_training:bool=True, img_h:int=32, img_w:int=100, max_length:int=25, check_length:bool=True, case_sensitive:bool=False, charset_path:str='data/charset_36.txt', convert_mode:str='RGB', data_aug:bool=True, deteriorate_ratio:float=0., multiscales:bool=True, one_hot_y:bool=True, return_idx:bool=False, return_raw:bool=False, **kwargs): self.path, self.name = Path(path), Path(path).name assert self.path.is_dir() and self.path.exists(), f"{path} is not a valid directory." self.convert_mode, self.check_length = convert_mode, check_length self.img_h, self.img_w = img_h, img_w self.max_length, self.one_hot_y = max_length, one_hot_y self.return_idx, self.return_raw = return_idx, return_raw self.case_sensitive, self.is_training = case_sensitive, is_training self.data_aug, self.multiscales = data_aug, multiscales self.charset = CharsetMapper(charset_path, max_length=max_length+1) self.c = self.charset.num_classes self.env = lmdb.open(str(path), readonly=True, lock=False, readahead=False, meminit=False) assert self.env, f'Cannot open LMDB dataset from {path}.' with self.env.begin(write=False) as txn: self.length = int(txn.get('num-samples'.encode())) if self.is_training and self.data_aug: self.augment_tfs = transforms.Compose([ CVGeometry(degrees=45, translate=(0.0, 0.0), scale=(0.5, 2.), shear=(45, 15), distortion=0.5, p=0.5), CVDeterioration(var=20, degrees=6, factor=4, p=0.25), CVColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.25) ]) self.totensor = transforms.ToTensor() def __len__(self): return self.length def _next_image(self, index): next_index = random.randint(0, len(self) - 1) return self.get(next_index) def _check_image(self, x, pixels=6): if x.size[0] <= pixels or x.size[1] <= pixels: return False else: return True def resize_multiscales(self, img, borderType=cv2.BORDER_CONSTANT): def _resize_ratio(img, ratio, fix_h=True): if ratio * self.img_w < self.img_h: if fix_h: trg_h = self.img_h else: trg_h = int(ratio * self.img_w) trg_w = self.img_w else: trg_h, trg_w = self.img_h, int(self.img_h / ratio) img = cv2.resize(img, (trg_w, trg_h)) pad_h, pad_w = (self.img_h - trg_h) / 2, (self.img_w - trg_w) / 2 top, bottom = math.ceil(pad_h), math.floor(pad_h) left, right = math.ceil(pad_w), math.floor(pad_w) img = cv2.copyMakeBorder(img, top, bottom, left, right, borderType) return img if self.is_training: if random.random() < 0.5: base, maxh, maxw = self.img_h, self.img_h, self.img_w h, w = random.randint(base, maxh), random.randint(base, maxw) return _resize_ratio(img, h/w) else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio def resize(self, img): if self.multiscales: return self.resize_multiscales(img, cv2.BORDER_REPLICATE) else: return cv2.resize(img, (self.img_w, self.img_h)) def get(self, idx): with self.env.begin(write=False) as txn: image_key, label_key = f'image-{idx+1:09d}', f'label-{idx+1:09d}' try: label = str(txn.get(label_key.encode()), 'utf-8') # label label = re.sub('[^0-9a-zA-Z]+', '', label) if self.check_length and self.max_length > 0: if len(label) > self.max_length or len(label) <= 0: #logging.info(f'Long or short text image is found: {self.name}, {idx}, {label}, {len(label)}') return self._next_image(idx) label = label[:self.max_length] imgbuf = txn.get(image_key.encode()) # image buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) # EXIF warning from TiffPlugin image = PIL.Image.open(buf).convert(self.convert_mode) if self.is_training and not self._check_image(image): #logging.info(f'Invalid image is found: {self.name}, {idx}, {label}, {len(label)}') return self._next_image(idx) except: import traceback traceback.print_exc() logging.info(f'Corrupted image is found: {self.name}, {idx}, {label}, {len(label)}') return self._next_image(idx) return image, label, idx def _process_training(self, image): if self.data_aug: image = self.augment_tfs(image) image = self.resize(np.array(image)) return image def _process_test(self, image): return self.resize(np.array(image)) # TODO:move is_training to here def __getitem__(self, idx): image, text, idx_new = self.get(idx) if not self.is_training: assert idx == idx_new, f'idx {idx} != idx_new {idx_new} during testing.' if self.is_training: image = self._process_training(image) else: image = self._process_test(image) if self.return_raw: return image, text image = self.totensor(image) length = tensor(len(text) + 1).to(dtype=torch.long) # one for end token label = self.charset.get_labels(text, case_sensitive=self.case_sensitive) label = tensor(label).to(dtype=torch.long) if self.one_hot_y: label = onehot(label, self.charset.num_classes) if self.return_idx: y = [label, length, idx_new] else: y = [label, length] return image, y class TextDataset(Dataset): def __init__(self, path:PathOrStr, delimiter:str='\t', max_length:int=25, charset_path:str='data/charset_36.txt', case_sensitive=False, one_hot_x=True, one_hot_y=True, is_training=True, smooth_label=False, smooth_factor=0.2, use_sm=False, **kwargs): self.path = Path(path) self.case_sensitive, self.use_sm = case_sensitive, use_sm self.smooth_factor, self.smooth_label = smooth_factor, smooth_label self.charset = CharsetMapper(charset_path, max_length=max_length+1) self.one_hot_x, self.one_hot_y, self.is_training = one_hot_x, one_hot_y, is_training if self.is_training and self.use_sm: self.sm = SpellingMutation(charset=self.charset) dtype = {'inp': str, 'gt': str} self.df = pd.read_csv(self.path, dtype=dtype, delimiter=delimiter, na_filter=False) self.inp_col, self.gt_col = 0, 1 def __len__(self): return len(self.df) def __getitem__(self, idx): text_x = self.df.iloc[idx, self.inp_col] text_x = re.sub('[^0-9a-zA-Z]+', '', text_x) if not self.case_sensitive: text_x = text_x.lower() if self.is_training and self.use_sm: text_x = self.sm(text_x) length_x = tensor(len(text_x) + 1).to(dtype=torch.long) # one for end token label_x = self.charset.get_labels(text_x, case_sensitive=self.case_sensitive) label_x = tensor(label_x) if self.one_hot_x: label_x = onehot(label_x, self.charset.num_classes) if self.is_training and self.smooth_label: label_x = torch.stack([self.prob_smooth_label(l) for l in label_x]) x = [label_x, length_x] text_y = self.df.iloc[idx, self.gt_col] text_y = re.sub('[^0-9a-zA-Z]+', '', text_y) if not self.case_sensitive: text_y = text_y.lower() length_y = tensor(len(text_y) + 1).to(dtype=torch.long) # one for end token label_y = self.charset.get_labels(text_y, case_sensitive=self.case_sensitive) label_y = tensor(label_y) if self.one_hot_y: label_y = onehot(label_y, self.charset.num_classes) y = [label_y, length_y] return x, y def prob_smooth_label(self, one_hot): one_hot = one_hot.float() delta = torch.rand([]) * self.smooth_factor num_classes = len(one_hot) noise = torch.rand(num_classes) noise = noise / noise.sum() * delta one_hot = one_hot * (1 - delta) + noise return one_hot class SpellingMutation(object): def __init__(self, pn0=0.7, pn1=0.85, pn2=0.95, pt0=0.7, pt1=0.85, charset=None): """ Args: pn0: the prob of not modifying characters is (pn0) pn1: the prob of modifying one characters is (pn1 - pn0) pn2: the prob of modifying two characters is (pn2 - pn1), and three (1 - pn2) pt0: the prob of replacing operation is pt0. pt1: the prob of inserting operation is (pt1 - pt0), and deleting operation is (1 - pt1) """ super().__init__() self.pn0, self.pn1, self.pn2 = pn0, pn1, pn2 self.pt0, self.pt1 = pt0, pt1 self.charset = charset logging.info(f'the probs: pn0={self.pn0}, pn1={self.pn1} ' + f'pn2={self.pn2}, pt0={self.pt0}, pt1={self.pt1}') def is_digit(self, text, ratio=0.5): length = max(len(text), 1) digit_num = sum([t in self.charset.digits for t in text]) if digit_num / length < ratio: return False return True def is_unk_char(self, char): # return char == self.charset.unk_char return (char not in self.charset.digits) and (char not in self.charset.alphabets) def get_num_to_modify(self, length): prob = random.random() if prob < self.pn0: num_to_modify = 0 elif prob < self.pn1: num_to_modify = 1 elif prob < self.pn2: num_to_modify = 2 else: num_to_modify = 3 if length <= 1: num_to_modify = 0 elif length >= 2 and length <= 4: num_to_modify = min(num_to_modify, 1) else: num_to_modify = min(num_to_modify, length // 2) # smaller than length // 2 return num_to_modify def __call__(self, text, debug=False): if self.is_digit(text): return text length = len(text) num_to_modify = self.get_num_to_modify(length) if num_to_modify <= 0: return text chars = [] index = np.arange(0, length) random.shuffle(index) index = index[: num_to_modify] if debug: self.index = index for i, t in enumerate(text): if i not in index: chars.append(t) elif self.is_unk_char(t): chars.append(t) else: prob = random.random() if prob < self.pt0: # replace chars.append(random.choice(self.charset.alphabets)) elif prob < self.pt1: # insert chars.append(random.choice(self.charset.alphabets)) chars.append(t) else: # delete continue new_text = ''.join(chars[: self.charset.max_length-1]) return new_text if len(new_text) >= 1 else text