Spaces:
Running
Running
import logging | |
import os | |
import random | |
import numpy as np | |
import torch | |
from Customized_IDSF.model import JointPhoBERT, JointXLMR | |
from seqeval.metrics import f1_score, precision_score, recall_score | |
from transformers import ( | |
AutoTokenizer, | |
RobertaConfig, | |
XLMRobertaConfig, | |
XLMRobertaTokenizer, | |
) | |
MODEL_CLASSES = { | |
"xlmr": (XLMRobertaConfig, JointXLMR, XLMRobertaTokenizer), | |
"phobert": (RobertaConfig, JointPhoBERT, AutoTokenizer), | |
} | |
MODEL_PATH_MAP = { | |
"xlmr": "xlm-roberta-base", | |
"phobert": "vinai/phobert-base", | |
} | |
def get_intent_labels(args): | |
return [ | |
label.strip() | |
for label in open(os.path.join(args.data_dir, args.token_level, args.intent_label_file), "r", encoding="utf-8") | |
] | |
def get_slot_labels(args): | |
return [ | |
label.strip() | |
for label in open(os.path.join(args.data_dir, args.token_level, args.slot_label_file), "r", encoding="utf-8") | |
] | |
def load_tokenizer(args): | |
return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path) | |
def init_logger(): | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if not args.no_cuda and torch.cuda.is_available(): | |
torch.cuda.manual_seed_all(args.seed) | |
def compute_metrics(intent_preds, intent_labels, slot_preds, slot_labels): | |
assert len(intent_preds) == len(intent_labels) == len(slot_preds) == len(slot_labels) | |
results = {} | |
intent_result = get_intent_acc(intent_preds, intent_labels) | |
slot_result = get_slot_metrics(slot_preds, slot_labels) | |
sementic_result = get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels) | |
mean_intent_slot = (intent_result["intent_acc"] + slot_result["slot_f1"]) / 2 | |
results.update(intent_result) | |
results.update(slot_result) | |
results.update(sementic_result) | |
results["mean_intent_slot"] = mean_intent_slot | |
return results | |
def get_slot_metrics(preds, labels): | |
assert len(preds) == len(labels) | |
return { | |
"slot_precision": precision_score(labels, preds), | |
"slot_recall": recall_score(labels, preds), | |
"slot_f1": f1_score(labels, preds), | |
} | |
def get_intent_acc(preds, labels): | |
acc = (preds == labels).mean() | |
return {"intent_acc": acc} | |
def read_prediction_text(args): | |
return [text.strip() for text in open(os.path.join(args.pred_dir, args.pred_input_file), "r", encoding="utf-8")] | |
def get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels): | |
"""For the cases that intent and all the slots are correct (in one sentence)""" | |
# Get the intent comparison result | |
intent_result = intent_preds == intent_labels | |
# Get the slot comparision result | |
slot_result = [] | |
for preds, labels in zip(slot_preds, slot_labels): | |
assert len(preds) == len(labels) | |
one_sent_result = True | |
for p, l in zip(preds, labels): | |
if p != l: | |
one_sent_result = False | |
break | |
slot_result.append(one_sent_result) | |
slot_result = np.array(slot_result) | |
semantic_acc = np.multiply(intent_result, slot_result).mean() | |
return {"semantic_frame_acc": semantic_acc} | |