Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,80 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
messages = [
|
10 |
-
{"role": "user", "content": "Who are you?"},
|
11 |
-
]
|
12 |
-
pipe = pipeline("text-generation", model="cyan2k/molmo-7B-D-bnb-4bit", trust_remote_code=True)
|
13 |
-
pipe(messages)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import spaces
|
6 |
|
7 |
+
# Load the processor and model
|
8 |
+
processor = AutoProcessor.from_pretrained(
|
9 |
+
'allenai/Molmo-7B-D-0924',
|
10 |
+
trust_remote_code=True,
|
11 |
+
torch_dtype='auto',
|
12 |
+
device_map='auto'
|
13 |
+
)
|
14 |
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
'allenai/Molmo-7B-D-0924',
|
17 |
+
trust_remote_code=True,
|
18 |
+
torch_dtype='auto',
|
19 |
+
device_map='auto'
|
20 |
+
)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
@spaces.GPU(duration=120)
|
24 |
+
def process_image_and_text(image, text):
|
25 |
+
# Process the image and text
|
26 |
+
inputs = processor.process(
|
27 |
+
images=[Image.fromarray(image)],
|
28 |
+
text=text
|
29 |
+
)
|
30 |
|
31 |
+
# Move inputs to the correct device and make a batch of size 1
|
32 |
+
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
33 |
+
|
34 |
+
# Generate output
|
35 |
+
output = model.generate_from_batch(
|
36 |
+
inputs,
|
37 |
+
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
38 |
+
tokenizer=processor.tokenizer
|
39 |
+
)
|
40 |
+
|
41 |
+
# Only get generated tokens; decode them to text
|
42 |
+
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
43 |
+
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
44 |
+
|
45 |
+
return generated_text
|
46 |
+
|
47 |
+
def chatbot(image, text, history):
|
48 |
+
if image is None:
|
49 |
+
return history + [("Please upload an image first.", None)]
|
50 |
+
|
51 |
+
response = process_image_and_text(image, text)
|
52 |
+
history.append((text, response))
|
53 |
+
return history
|
54 |
+
|
55 |
+
# Define the Gradio interface
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
image_input = gr.Image(type="numpy")
|
61 |
+
chatbot_output = gr.Chatbot()
|
62 |
+
|
63 |
+
text_input = gr.Textbox(placeholder="Ask a question about the image...")
|
64 |
+
submit_button = gr.Button("Submit")
|
65 |
+
|
66 |
+
state = gr.State([])
|
67 |
+
|
68 |
+
submit_button.click(
|
69 |
+
chatbot,
|
70 |
+
inputs=[image_input, text_input, state],
|
71 |
+
outputs=[chatbot_output]
|
72 |
+
)
|
73 |
+
|
74 |
+
text_input.submit(
|
75 |
+
chatbot,
|
76 |
+
inputs=[image_input, text_input, state],
|
77 |
+
outputs=[chatbot_output]
|
78 |
+
)
|
79 |
+
|
80 |
+
demo.launch()
|