Spaces:
Runtime error
Runtime error
import os | |
import json | |
import torch | |
from peft import PeftModel, LoraConfig | |
import transformers | |
assert ( | |
"LlamaTokenizer" in transformers._import_structure["models.llama"] | |
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" | |
from transformers import LlamaTokenizer, LlamaForCausalLM | |
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") | |
base_model = LlamaForCausalLM.from_pretrained( | |
"decapoda-research/llama-7b-hf", | |
load_in_8bit=False, | |
torch_dtype=torch.float16, | |
device_map={"": "cpu"}, | |
) | |
lora_model = PeftModel.from_pretrained( | |
base_model, | |
"tloen/alpaca-lora-7b", | |
device_map={"": "cpu"}, | |
torch_dtype=torch.float16, | |
) | |
# merge weights | |
for layer in lora_model.base_model.model.model.layers: | |
layer.self_attn.q_proj.merge_weights = True | |
layer.self_attn.v_proj.merge_weights = True | |
lora_model.train(False) | |
lora_model_sd = lora_model.state_dict() | |
params = { | |
"dim": 4096, | |
"multiple_of": 256, | |
"n_heads": 32, | |
"n_layers": 32, | |
"norm_eps": 1e-06, | |
"vocab_size": -1, | |
} | |
n_layers = params["n_layers"] | |
n_heads = params["n_heads"] | |
dim = params["dim"] | |
dims_per_head = dim // n_heads | |
base = 10000.0 | |
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) | |
def permute(w): | |
return ( | |
w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) | |
) | |
def unpermute(w): | |
return ( | |
w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim) | |
) | |
def translate_state_dict_key(k): | |
k = k.replace("base_model.model.", "") | |
if k == "model.embed_tokens.weight": | |
return "tok_embeddings.weight" | |
elif k == "model.norm.weight": | |
return "norm.weight" | |
elif k == "lm_head.weight": | |
return "output.weight" | |
elif k.startswith("model.layers."): | |
layer = k.split(".")[2] | |
if k.endswith(".self_attn.q_proj.weight"): | |
return f"layers.{layer}.attention.wq.weight" | |
elif k.endswith(".self_attn.k_proj.weight"): | |
return f"layers.{layer}.attention.wk.weight" | |
elif k.endswith(".self_attn.v_proj.weight"): | |
return f"layers.{layer}.attention.wv.weight" | |
elif k.endswith(".self_attn.o_proj.weight"): | |
return f"layers.{layer}.attention.wo.weight" | |
elif k.endswith(".mlp.gate_proj.weight"): | |
return f"layers.{layer}.feed_forward.w1.weight" | |
elif k.endswith(".mlp.down_proj.weight"): | |
return f"layers.{layer}.feed_forward.w2.weight" | |
elif k.endswith(".mlp.up_proj.weight"): | |
return f"layers.{layer}.feed_forward.w3.weight" | |
elif k.endswith(".input_layernorm.weight"): | |
return f"layers.{layer}.attention_norm.weight" | |
elif k.endswith(".post_attention_layernorm.weight"): | |
return f"layers.{layer}.ffn_norm.weight" | |
elif k.endswith("rotary_emb.inv_freq") or "lora" in k: | |
return None | |
else: | |
print(layer, k) | |
raise NotImplementedError | |
else: | |
print(k) | |
raise NotImplementedError | |
new_state_dict = {} | |
for k, v in lora_model_sd.items(): | |
new_k = translate_state_dict_key(k) | |
if new_k is not None: | |
if "wq" in new_k or "wk" in new_k: | |
new_state_dict[new_k] = unpermute(v) | |
else: | |
new_state_dict[new_k] = v | |
os.makedirs("./ckpt", exist_ok=True) | |
torch.save(new_state_dict, "./ckpt/consolidated.00.pth") | |
with open("./ckpt/params.json", "w") as f: | |
json.dump(params, f) | |