import torch from peft import PeftModel import transformers import gradio as gr import BLIPIntepret assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") BASE_MODEL = "decapoda-research/llama-7b-hf" LORA_WEIGHTS = "tloen/alpaca-lora-7b" if torch.cuda.is_available(): device = "cuda" print('Using GPU') else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass if device == "cuda": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained(model, LORA_WEIGHTS, torch_dtype=torch.float16) elif device == "mps": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16, ) else: model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) BLIPmodel,BLIPprocessor = BLIPIntepret.init_BLIP(device) def generate_prompt(instruction, input=None, context = None): if context and input: print('Context and Input combined') return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {context} {instruction} ### Input: {input} ### Response:""" elif input: print('Input only mode') return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" elif context: print('Context only mode') return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {context} {instruction} ### Response:""" else: print('Instruction Mode') return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" model.eval() if torch.__version__ >= "2": model = torch.compile(model) def evaluate( instruction, input=None, image = None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): if image is None: context = None else: context = BLIPIntepret.infer_BLIP2(BLIPmodel,BLIPprocessor, image, device) context+= '\nThe above are the context of an image that you will use alongside the response.' prompt = generate_prompt(instruction, input, context) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip() gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Tell me about alpacas." ), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Image(shape = (200,200), placeholder = "Image"), gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), gr.components.Slider( minimum=1, maximum=2000, step=1, value=128, label="Max tokens" ), ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title="🦙🌲 BLLAMA", description="BLLAMA is a pipeline that uses both ALPACA-LORA as well as BLIP-2 to allow LLAMA to generate text in the context of simple images. You can visit the Github repo [here](https://github.com/DESU-CLUB/BLLAMA)\n\n\ The original ALPACA-LORA can be found [here](https://github.com/tloen/alpaca-lora) and the BLIP-2 model can be found on huggingface.\ \n## Credits\n\ I would like to credit tloen, the creator of ALPACA-LORA, as well as huggingface for their own implementation of LLAMA and BLIP-2. \ \nI would also like to credit the original creators of [LLAMA](https://github.com/facebookresearch/llama), Meta AI, as well as Stanford University, who created [ALPACA](https://github.com/tatsu-lab/stanford_alpaca)\ ", ).launch() # Old testing code follows. """ if __name__ == "__main__": # testing code for readme for instruction in [ "Tell me about alpacas.", "Tell me about the president of Mexico in 2019.", "Tell me about the king of France in 2019.", "List all Canadian provinces in alphabetical order.", "Write a Python program that prints the first 10 Fibonacci numbers.", "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", "Tell me five words that rhyme with 'shock'.", "Translate the sentence 'I have no mouth but I must scream' into Spanish.", "Count up from 1 to 500.", ]: print("Instruction:", instruction) print("Response:", evaluate(instruction)) print() """